点击进入Anaconda Prompt自动进入base环境:
(base) C:\Users\user5>
1. 若希望查看电脑上的所有虚拟环境,输入命令conda env list:
(base) C:\Users\user5>conda env list
# conda environments:
#
torch_fy C:\Users\user5\.conda\envs\torch_fy
base * D:\Program Files\Anaconda
torch_xy D:\Program Files\Anaconda\envs\torch_xy
torch_zfy D:\Program Files\Anaconda\envs\torch_zfy
zxt D:\Program Files\Anaconda\envs\zxt
通过上图,可以看出此电脑上除了base环境,还存在torch_fy、torch_xy、torch_zfy、zxt四个人为创建的虚拟环境。
2. 若希望进入某一个虚拟环境,输入命令conda activate 环境名,如conda activate torch_zfy,则括号里的此时的环境由base变为torch_zfy:
(base) C:\Users\user5>conda activate torch_zfy
(torch_zfy) C:\Users\user5>
3. 若要查看该环境里的包,输入命令conda list:
(torch_zfy) C:\Users\user5>conda list
# packages in environment at D:\Program Files\Anaconda\envs\torch_zfy:
#
# Name Version Build Channel
blas 1.0 mkl
brotli 1.0.9 h2bbff1b_7
brotli-bin 1.0.9 h2bbff1b_7
ca-certificates 2023.01.10 haa95532_0
certifi 2022.12.7 py39haa95532_0
charset-normalizer 3.0.1 pypi_0 pypi
colorama 0.4.6 pypi_0 pypi
contourpy 1.0.5 py39h59b6b97_0
cycler 0.11.0 pyhd3eb1b0_0
einops 0.8.0 pypi_0 pypi
filelock 3.15.4 pypi_0 pypi
fonttools 4.25.0 pyhd3eb1b0_0
freetype 2.12.1 ha860e81_0
fsspec 2024.6.1 pypi_0 pypi
fvcore 0.1.5.post20221221 pypi_0 pypi
gdal 3.4.3 pypi_0 pypi
则会显示出该虚拟环境下的所有python包,这里我只截取了一小部分。通过这一命令,可以清楚地查看安装包的名称、版本、安装方式等。
4. 若需要安装包,则可在此基础上输入安装包的命令,如:
(torch_zfy) C:\Users\user5>python -m pip install scikit-learn
Collecting scikit-learn
Downloading scikit_learn-1.5.2-cp39-cp39-win_amd64.whl (11.0 MB)
---------------------------------------- 11.0/11.0 MB 16.0 MB/s eta 0:00:00
Collecting joblib>=1.2.0
Using cached joblib-1.4.2-py3-none-any.whl (301 kB)
WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='pypi.org', port=443): Read timed out. (read timeout=15)")': /simple/threadpoolctl/
Collecting threadpoolctl>=3.1.0
Using cached threadpoolctl-3.5.0-py3-none-any.whl (18 kB)
Requirement already satisfied: numpy>=1.19.5 in d:\program files\anaconda\envs\torch_zfy\lib\site-packages (from scikit-learn) (1.24.2)
Requirement already satisfied: scipy>=1.6.0 in d:\program files\anaconda\envs\torch_zfy\lib\site-packages (from scikit-learn) (1.9.1)
Installing collected packages: threadpoolctl, joblib, scikit-learn
Successfully installed joblib-1.4.2 scikit-learn-1.5.2 threadpoolctl-3.5.0
需要注意的是,要看清楚此时括号里的虚拟环境名称,安装的包会存放在该虚拟环境下(比如我这里就是将sklearn安装到了torch_zfy环境下),并不是所有虚拟环境都会被安装此时想要安装的包。
5. 在选择使用GPU时,若需要查看服务器上显卡的状态,输入命令nvidia-smi:
(torch_zfy) C:\Users\user5>nvidia-smi
Tue Oct 22 11:50:57 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 560.94 Driver Version: 560.94 CUDA Version: 12.6 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 3090 WDDM | 00000000:1A:00.0 Off | N/A |
| 30% 31C P8 7W / 350W | 440MiB / 24576MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
| 1 NVIDIA GeForce RTX 3090 WDDM | 00000000:1B:00.0 Off | N/A |
| 52% 57C P2 261W / 350W | 11369MiB / 24576MiB | 27% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
| 2 NVIDIA GeForce RTX 3090 WDDM | 00000000:3E:00.0 Off | N/A |
| 47% 59C P2 227W / 350W | 16033MiB / 24576MiB | 36% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
| 3 NVIDIA GeForce RTX 3090 WDDM | 00000000:88:00.0 Off | N/A |
| 31% 40C P5 60W / 350W | 5339MiB / 24576MiB | 1% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
| 4 NVIDIA GeForce RTX 3090 WDDM | 00000000:89:00.0 Off | N/A |
| 30% 42C P3 88W / 350W | 15976MiB / 24576MiB | 37% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
| 5 NVIDIA GeForce RTX 3090 WDDM | 00000000:B1:00.0 Off | N/A |
| 30% 31C P8 21W / 350W | 1147MiB / 24576MiB | 7% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
| 6 NVIDIA GeForce RTX 4090 D WDDM | 00000000:B2:00.0 Off | Off |
| 31% 31C P8 6W / 425W | 1556MiB / 24564MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 3 N/A N/A 39804 C ...\Anaconda\envs\torch_zfy\python.exe N/A |
| 4 N/A N/A 6504 C ...\Anaconda\envs\torch_zfy\python.exe N/A |
| 5 N/A N/A 7140 C+G ...2txyewy\StartMenuExperienceHost.exe N/A |
| 5 N/A N/A 10900 C+G ...crosoft\Edge\Application\msedge.exe N/A |
| 5 N/A N/A 24404 C+G ....Search_cw5n1h2txyewy\SearchApp.exe N/A |
| 5 N/A N/A 30604 C+G ...rive\app-3.12.0\QuarkCloudDrive.exe N/A |
| 5 N/A N/A 31488 C+G ...CBS_cw5n1h2txyewy\TextInputHost.exe N/A |
| 5 N/A N/A 33384 C+G ...on\129.0.2792.89\msedgewebview2.exe N/A |
+-----------------------------------------------------------------------------------------+
可以根据此时显卡内存的占用情况选择自己要使用的GPU。
6. 若要实现实时的GPU使用情况监控,则输入命令nvidia-smi -l,即可实现每隔5秒的以上表格显示。
(torch_zfy) C:\Users\user5>nvidia-smi -l
若想结束监控,按Ctrl+c即可停止。