Python深度学习Anaconda Prompt常见命令

点击进入Anaconda Prompt自动进入base环境:

(base) C:\Users\user5>

1. 若希望查看电脑上的所有虚拟环境,输入命令conda env list:

(base) C:\Users\user5>conda env list
# conda environments:
#
torch_fy                 C:\Users\user5\.conda\envs\torch_fy
base                  *  D:\Program Files\Anaconda
torch_xy                 D:\Program Files\Anaconda\envs\torch_xy
torch_zfy                D:\Program Files\Anaconda\envs\torch_zfy
zxt                      D:\Program Files\Anaconda\envs\zxt

通过上图,可以看出此电脑上除了base环境,还存在torch_fy、torch_xy、torch_zfy、zxt四个人为创建的虚拟环境。

2. 若希望进入某一个虚拟环境,输入命令conda activate 环境名,如conda activate torch_zfy,则括号里的此时的环境由base变为torch_zfy:

(base) C:\Users\user5>conda activate torch_zfy

(torch_zfy) C:\Users\user5>

3. 若要查看该环境里的包,输入命令conda list:

(torch_zfy) C:\Users\user5>conda list
# packages in environment at D:\Program Files\Anaconda\envs\torch_zfy:
#
# Name                    Version                   Build  Channel
blas                      1.0                         mkl
brotli                    1.0.9                h2bbff1b_7
brotli-bin                1.0.9                h2bbff1b_7
ca-certificates           2023.01.10           haa95532_0
certifi                   2022.12.7        py39haa95532_0
charset-normalizer        3.0.1                    pypi_0    pypi
colorama                  0.4.6                    pypi_0    pypi
contourpy                 1.0.5            py39h59b6b97_0
cycler                    0.11.0             pyhd3eb1b0_0
einops                    0.8.0                    pypi_0    pypi
filelock                  3.15.4                   pypi_0    pypi
fonttools                 4.25.0             pyhd3eb1b0_0
freetype                  2.12.1               ha860e81_0
fsspec                    2024.6.1                 pypi_0    pypi
fvcore                    0.1.5.post20221221          pypi_0    pypi
gdal                      3.4.3                    pypi_0    pypi

则会显示出该虚拟环境下的所有python包,这里我只截取了一小部分。通过这一命令,可以清楚地查看安装包的名称、版本、安装方式等。

4. 若需要安装包,则可在此基础上输入安装包的命令,如:

(torch_zfy) C:\Users\user5>python -m pip install scikit-learn
Collecting scikit-learn
  Downloading scikit_learn-1.5.2-cp39-cp39-win_amd64.whl (11.0 MB)
     ---------------------------------------- 11.0/11.0 MB 16.0 MB/s eta 0:00:00
Collecting joblib>=1.2.0
  Using cached joblib-1.4.2-py3-none-any.whl (301 kB)
WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='pypi.org', port=443): Read timed out. (read timeout=15)")': /simple/threadpoolctl/
Collecting threadpoolctl>=3.1.0
  Using cached threadpoolctl-3.5.0-py3-none-any.whl (18 kB)
Requirement already satisfied: numpy>=1.19.5 in d:\program files\anaconda\envs\torch_zfy\lib\site-packages (from scikit-learn) (1.24.2)
Requirement already satisfied: scipy>=1.6.0 in d:\program files\anaconda\envs\torch_zfy\lib\site-packages (from scikit-learn) (1.9.1)
Installing collected packages: threadpoolctl, joblib, scikit-learn
Successfully installed joblib-1.4.2 scikit-learn-1.5.2 threadpoolctl-3.5.0

需要注意的是,要看清楚此时括号里的虚拟环境名称,安装的包会存放在该虚拟环境下(比如我这里就是将sklearn安装到了torch_zfy环境下),并不是所有虚拟环境都会被安装此时想要安装的包。

5. 在选择使用GPU时,若需要查看服务器上显卡的状态,输入命令nvidia-smi:

(torch_zfy) C:\Users\user5>nvidia-smi
Tue Oct 22 11:50:57 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 560.94                 Driver Version: 560.94         CUDA Version: 12.6     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                  Driver-Model | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3090      WDDM  |   00000000:1A:00.0 Off |                  N/A |
| 30%   31C    P8              7W /  350W |     440MiB /  24576MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 3090      WDDM  |   00000000:1B:00.0 Off |                  N/A |
| 52%   57C    P2            261W /  350W |   11369MiB /  24576MiB |     27%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA GeForce RTX 3090      WDDM  |   00000000:3E:00.0 Off |                  N/A |
| 47%   59C    P2            227W /  350W |   16033MiB /  24576MiB |     36%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA GeForce RTX 3090      WDDM  |   00000000:88:00.0 Off |                  N/A |
| 31%   40C    P5             60W /  350W |    5339MiB /  24576MiB |      1%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA GeForce RTX 3090      WDDM  |   00000000:89:00.0 Off |                  N/A |
| 30%   42C    P3             88W /  350W |   15976MiB /  24576MiB |     37%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA GeForce RTX 3090      WDDM  |   00000000:B1:00.0 Off |                  N/A |
| 30%   31C    P8             21W /  350W |    1147MiB /  24576MiB |      7%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA GeForce RTX 4090 D    WDDM  |   00000000:B2:00.0 Off |                  Off |
| 31%   31C    P8              6W /  425W |    1556MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    3   N/A  N/A     39804      C   ...\Anaconda\envs\torch_zfy\python.exe      N/A      |
|    4   N/A  N/A      6504      C   ...\Anaconda\envs\torch_zfy\python.exe      N/A      |
|    5   N/A  N/A      7140    C+G   ...2txyewy\StartMenuExperienceHost.exe      N/A      |
|    5   N/A  N/A     10900    C+G   ...crosoft\Edge\Application\msedge.exe      N/A      |
|    5   N/A  N/A     24404    C+G   ....Search_cw5n1h2txyewy\SearchApp.exe      N/A      |
|    5   N/A  N/A     30604    C+G   ...rive\app-3.12.0\QuarkCloudDrive.exe      N/A      |
|    5   N/A  N/A     31488    C+G   ...CBS_cw5n1h2txyewy\TextInputHost.exe      N/A      |
|    5   N/A  N/A     33384    C+G   ...on\129.0.2792.89\msedgewebview2.exe      N/A      |
+-----------------------------------------------------------------------------------------+

可以根据此时显卡内存的占用情况选择自己要使用的GPU。

6. 若要实现实时的GPU使用情况监控,则输入命令nvidia-smi -l,即可实现每隔5秒的以上表格显示。

(torch_zfy) C:\Users\user5>nvidia-smi -l

若想结束监控,按Ctrl+c即可停止。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值