【高光谱遥感分类论文解读1】Hyperspectral Image Classification Using Group-Aware Hierarchical Transformer(GAHT)

目录

一、论文基本信息

二、研究背景

三、研究方法

1. GAHT总体框架

2. GPE模块

3. Transformer编码模块

四、实验


本文是博主对原论文的解读,仅代表博主个人观点,欢迎在评论区和我交流~其中,本博文中的图片和公式均来源于原论文,如需进一步了解,请查看原论文。

一、论文基本信息

       1. 期刊:TGRS(IEEE Transactions on Geoscience and Remote Sensing)

       2. 发表年份:2022年

       3. 研究方向:高光谱遥感影像分类——Transformer流派

       4. 引用格式:Mei S, Song C, Ma M, et al. Hyperspectral image classification using group-aware hierarchical transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.

二、研究背景

       在高光谱影像分类中:

       (1)CNN感受野有限,难以捕捉长距离依赖关系;

       (2)Transformer类的方法能够弥补CNN的缺点,提取长距离的位置信息和波段信息,然而,也存在多头注意力机制(multi-head self-attention, MHSA)提取特征过度分散的问题。

       因此,文章提出层次化分组Tran

参考提供的引用内容,未涉及基于多注意力变压器和自适应超像素分割的主动学习的高光谱图像分类(Multi - Attention Transformer and Adaptive Superpixel Segmentation - Based Active Learning for Hyperspectral Image Classification)的相关信息。 高光谱图像分类是指对高光谱图像中的每个像素进行类别标记的过程。多注意力变压器(Multi - Attention Transformer)能够捕捉高光谱数据中的复杂特征和长距离依赖关系,自适应超像素分割可将图像分割成具有相似特征的区域,减少数据的冗余性,主动学习则可以通过选择最有价值的样本进行标注,提高分类效率和准确性。 在基于多注意力变压器和自适应超像素分割的主动学习的高光谱图像分类中,多注意力变压器可以用于提取高光谱图像的深层特征,自适应超像素分割可以将图像进行预处理,生成更有意义的超像素块,而主动学习则可以不断选择最具代表性的超像素块进行标注,以提升分类模型的性能。 ### 代码示例 以下是一个简化的高光谱图像分类流程示例(仅为概念展示,非完整代码): ```python import torch import torch.nn as nn # 定义多注意力变压器模块 class MultiAttentionTransformer(nn.Module): def __init__(self, input_dim, num_heads): super(MultiAttentionTransformer, self).__init__() self.multihead_attn = nn.MultiheadAttention(input_dim, num_heads) def forward(self, x): attn_output, _ = self.multihead_attn(x, x, x) return attn_output # 假设的自适应超像素分割函数 def adaptive_superpixel_segmentation(image): # 这里需要实现具体的自适应超像素分割算法 # 简单示例,返回分割后的超像素块 return image # 主动学习选择样本函数 def active_learning_selection(model, unlabeled_data): # 选择最有价值的样本 # 简单示例,随机选择 import random selected_index = random.choice(range(len(unlabeled_data))) return unlabeled_data[selected_index] # 高光谱图像分类模型 class HyperspectralClassifier(nn.Module): def __init__(self, input_dim, num_classes): super(HyperspectralClassifier, self).__init__() self.transformer = MultiAttentionTransformer(input_dim, num_heads=4) self.fc = nn.Linear(input_dim, num_classes) def forward(self, x): x = self.transformer(x) x = self.fc(x) return x # 示例使用 input_dim = 100 num_classes = 10 model = HyperspectralClassifier(input_dim, num_classes) # 模拟高光谱图像数据 hyperspectral_image = torch.randn(1000, input_dim) # 自适应超像素分割 segmented_image = adaptive_superpixel_segmentation(hyperspectral_image) # 主动学习选择样本 unlabeled_data = segmented_image selected_sample = active_learning_selection(model, unlabeled_data) # 训练模型 # 这里需要实现具体的训练流程 ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值