近年来高光谱深度学习语义分割方法分类及代表性网络

目录

一、卷积神经网络——光谱、空间、光谱-空间CNN

1. SSRN(Spectral-Spatial Residual Network)

2. HybridSN

3. A2S2K-ResNet

二、图卷积神经网络GCN

GCN(Graph Convolutional Networks for Hyperspectral Image Classification)

三、深度置信网络DBN

四、循环神经网络RNN

SRNN(Scalable Recurrent Neural Network)

五、生成对抗网络GAN(Generative Adversarial Network)

3D GAN

六、自注意力机制Transformer

1. SST(Spatial-Spectral Transformer)

2. SSFTT(Spectral-Spatial Feature Tokenization Transformer)


文中的所有引用量源自谷歌学术

文章代码均开源,可在github进行搜索

一、卷积神经网络——光谱、空间、光谱-空间CNN

       为充分利用高光谱图像在光谱维度上的信息,3D-CNN能够同时在空间和光谱维度上进行卷积操作,从而更好地捕捉高光谱图像中的光谱-空间特征。(这里的举例均为3D-CNN)

1. SSRN(Spectral-Spatial Residual Network)

高被引1000+

Zhong Z, Li J, Luo Z, et al. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847-858.

2. HybridSN

高被引1000+

Roy S K, Krishna G, Dubey S R, et al. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(2): 277-281.

3. A2S2K-ResNet

引用283

Roy S K, Manna S, Song T, et al. Attention-based adaptive spectral–spatial kernel ResNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(9): 7831-7843.

二、图卷积神经网络GCN

GCN(Graph Convolutional Networks for Hyperspectral Image Classification)

高被引1000+

Hong D, Gao L, Yao J, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(7): 5966-5978.

三、深度置信网络DBN

网络较老,暂不考虑。

四、循环神经网络RNN

       RNN及其变种(如LSTM和GRU)擅长处理序列数据,适用于捕捉高光谱图像光谱维度上的依赖关系。

SRNN(Scalable Recurrent Neural Network)

引用60

Paoletti M E, Haut J M, Plaza J, et al. Scalable recurrent neural network for hyperspectral image classification[J]. The Journal of Supercomputing, 2020, 76(11): 8866-8882.

五、生成对抗网络GAN(Generative Adversarial Network)

3D GAN

高被引2000+

Wu J, Zhang C, Xue T, et al. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling[J]. Advances in neural information processing systems, 2016, 29.

六、自注意力机制Transformer

       近年来,Transformer模型在自然语言处理和计算机视觉领域表现出了强大的性能。高光谱图像语义分割也开始引入Transformer模型,如ViT(Vision Transformer),以捕捉全局光谱-空间特征。

1. SST(Spatial-Spectral Transformer)

引用250

He X, Chen Y, Lin Z. Spatial-spectral transformer for hyperspectral image classification[J]. Remote Sensing, 2021, 13(3): 498.

2. SSFTT(Spectral-Spatial Feature Tokenization Transformer)

引用396

Sun L, Zhao G, Zheng Y, et al. Spectral–spatial feature tokenization transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值