目录
1. SSRN(Spectral-Spatial Residual Network)
GCN(Graph Convolutional Networks for Hyperspectral Image Classification)
SRNN(Scalable Recurrent Neural Network)
五、生成对抗网络GAN(Generative Adversarial Network)
1. SST(Spatial-Spectral Transformer)
2. SSFTT(Spectral-Spatial Feature Tokenization Transformer)
文中的所有引用量源自谷歌学术
文章代码均开源,可在github进行搜索
一、卷积神经网络——光谱、空间、光谱-空间CNN
为充分利用高光谱图像在光谱维度上的信息,3D-CNN能够同时在空间和光谱维度上进行卷积操作,从而更好地捕捉高光谱图像中的光谱-空间特征。(这里的举例均为3D-CNN)
1. SSRN(Spectral-Spatial Residual Network)
高被引1000+
Zhong Z, Li J, Luo Z, et al. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847-858.
2. HybridSN
高被引1000+
Roy S K, Krishna G, Dubey S R, et al. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(2): 277-281.
3. A2S2K-ResNet
引用283
Roy S K, Manna S, Song T, et al. Attention-based adaptive spectral–spatial kernel ResNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(9): 7831-7843.
二、图卷积神经网络GCN
GCN(Graph Convolutional Networks for Hyperspectral Image Classification)
高被引1000+
Hong D, Gao L, Yao J, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(7): 5966-5978.
三、深度置信网络DBN
网络较老,暂不考虑。
四、循环神经网络RNN
RNN及其变种(如LSTM和GRU)擅长处理序列数据,适用于捕捉高光谱图像光谱维度上的依赖关系。
SRNN(Scalable Recurrent Neural Network)
引用60
Paoletti M E, Haut J M, Plaza J, et al. Scalable recurrent neural network for hyperspectral image classification[J]. The Journal of Supercomputing, 2020, 76(11): 8866-8882.
五、生成对抗网络GAN(Generative Adversarial Network)
3D GAN
高被引2000+
Wu J, Zhang C, Xue T, et al. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling[J]. Advances in neural information processing systems, 2016, 29.
六、自注意力机制Transformer
近年来,Transformer模型在自然语言处理和计算机视觉领域表现出了强大的性能。高光谱图像语义分割也开始引入Transformer模型,如ViT(Vision Transformer),以捕捉全局光谱-空间特征。
1. SST(Spatial-Spectral Transformer)
引用250
He X, Chen Y, Lin Z. Spatial-spectral transformer for hyperspectral image classification[J]. Remote Sensing, 2021, 13(3): 498.
2. SSFTT(Spectral-Spatial Feature Tokenization Transformer)
引用396
Sun L, Zhao G, Zheng Y, et al. Spectral–spatial feature tokenization transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.