梯度下降与反向传播算法的原理与推导

本文深入探讨了梯度下降算法及其在多层神经网络中的应用。反向传播算法通过反向传播误差来更新权重,简化了多层神经网络的优化过程。文章详细阐述了反向传播的原理,包括链式求导法则在计算神经网络中误差对权重的偏导数的应用,以及如何通过误差反向传播更新权重。此外,还介绍了反向传播算法与前向传播的对比,展示了误差如何从输出层反向传递到输入层,以便优化网络的权重矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        梯度下降算法是机器学习中最常用的优化算法之一,它可以求得目标函数的最小值,即算法的最优解。而对于复杂的多层神经网络来说,运用梯度下降算法十分复杂,因为其包含求导过程,为此学者将多层神经网络的优化问题简化为反向传播过程,也就是说,将目标函数(输出误差项)层层传递回输入层,求出每个节点的误差项,并根据每个节点的误差项更新各个权值。首先我们复习梯度下降算法,然后详细推导反向传播算法的原理。

梯度下降算法

        我们的目标是优化目标函数,即求得目标函数的最小值,根据微积分的知识,求导数为0的点即是极值点。不过计算机可不会解方程,但是它可以凭借强大的计算能力,一步一步的去把函数的极值点『试』出来。

        那怎么保证快速地朝下降的方向走到局部最低点呢?这里的奥秘在于,我们每次都是向函数的梯度相反方向走的。梯度是一个向量,它指向函数值上升最快的方向。显然,梯度的反方向当然就是函数值下降最快的方向了。我们每次沿着梯度相反方向去修改的值,当然就能走到函数的最小值附近。

        梯度下降算法计算如下:

                                   。                                 (1)

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值