第十一章 曲线积分与曲面积分
第一节 对弧长的曲线积分
(1)第一类曲线积分定义
设 L \boldsymbol{L} L为二维 X O Y XOY XOY平面上的一条光滑有限的曲线弧。设一函数 f ( x , y ) f(x,y) f(x,y)的值(如质量、速度……)与曲线上 ( x , y ) (x,y) (x,y)点相关。曲线弧 L L L可以以各种分法分割为 n n n个小段,第 i i i个小段的的长度为 Δ s i \Delta s_i Δsi, ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi)为该小段上的一点。 λ \lambda λ 为最长弧段的长度。
则定义函数 f ( x , y ) f(x,y) f(x,y)在曲线弧 L \boldsymbol{L} L上的第一类曲线积分或对弧长的曲线积分为:
∫ L f ( x , y ) d s = lim λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ s i \int_{\boldsymbol{L}} f(x,y)\:\mathrm{d}s = \lim_{\lambda \to 0} \sum_{i=1}^{n}f(\xi_i,\eta_i)\Delta s_i ∫Lf(x,y)ds=λ→0limi=1∑nf(ξi,ηi)Δsi
其中 f ( x , y ) f(x,y) f(x,y)叫做被积函数, L \boldsymbol{L} L叫做积分弧段。
函数在三维曲线弧 Γ \boldsymbol{\Gamma} Γ上的第一类曲线积分与上述同理。
(2)第一类曲线积分的求解
已知二维曲线弧 L \boldsymbol{L} L的参数方程为:
{ x = ϕ ( t ) , ( α ≤ t ≤ β ) y = ψ ( t ) \begin{cases} x=\phi(t),&&&(\alpha \leq t \leq \beta)\\ y=\psi(t) \end{cases} {
x=ϕ(t),y=ψ(t)(α≤t≤β)
则函数 f ( x , y ) f(x,y) f(x,y)在该曲线弧上的第一类曲线积分可按如下方式进行求解:
∫ L f ( x , y ) d s = ∫ α β f [ ϕ ( t ) , ψ ( t ) ] ϕ ′ 2 ( t ) + ψ ′ 2 d t ( α < β ) . ( 1 − 1 ) \qquad\qquad\int_{\boldsymbol{L}}f(x,y)\:\mathrm{d}s = \int_\alpha^\beta f[\phi(t),\psi(t)]\sqrt{\phi^{'2}(t)+\psi^{'2}}\mathrm{d}t \quad (\alpha < \beta).\qquad\qquad(1-1) ∫Lf(x,y)ds=∫αβf[ϕ(t),ψ(t)]ϕ′2(t)+ψ′2