《高等数学》第十一章 曲线积分与曲面积分

第十一章 曲线积分与曲面积分

第一节 对弧长的曲线积分

(1)第一类曲线积分定义

  设 L \boldsymbol{L} L为二维 X O Y XOY XOY平面上的一条光滑有限的曲线弧。设一函数 f ( x , y ) f(x,y) f(x,y)的值(如质量、速度……)与曲线上 ( x , y ) (x,y) (x,y)点相关。曲线弧 L L L可以以各种分法分割为 n n n个小段,第 i i i个小段的的长度为 Δ s i \Delta s_i Δsi ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi)为该小段上的一点。 λ \lambda λ 为最长弧段的长度。
  则定义函数 f ( x , y ) f(x,y) f(x,y)在曲线弧 L \boldsymbol{L} L上的第一类曲线积分对弧长的曲线积分为:

∫ L f ( x , y )   d s = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ s i \int_{\boldsymbol{L}} f(x,y)\:\mathrm{d}s = \lim_{\lambda \to 0} \sum_{i=1}^{n}f(\xi_i,\eta_i)\Delta s_i Lf(x,y)ds=λ0limi=1nf(ξi,ηi)Δsi

其中 f ( x , y ) f(x,y) f(x,y)叫做被积函数, L \boldsymbol{L} L叫做积分弧段。

函数在三维曲线弧 Γ \boldsymbol{\Gamma} Γ上的第一类曲线积分与上述同理。


(2)第一类曲线积分的求解

  已知二维曲线弧 L \boldsymbol{L} L的参数方程为:
{ x = ϕ ( t ) , ( α ≤ t ≤ β ) y = ψ ( t ) \begin{cases} x=\phi(t),&&&(\alpha \leq t \leq \beta)\\ y=\psi(t) \end{cases} { x=ϕ(t),y=ψ(t)(αtβ)
则函数 f ( x , y ) f(x,y) f(x,y)在该曲线弧上的第一类曲线积分可按如下方式进行求解:

∫ L f ( x , y )   d s = ∫ α β f [ ϕ ( t ) , ψ ( t ) ] ϕ ′ 2 ( t ) + ψ ′ 2 d t ( α < β ) . ( 1 − 1 ) \qquad\qquad\int_{\boldsymbol{L}}f(x,y)\:\mathrm{d}s = \int_\alpha^\beta f[\phi(t),\psi(t)]\sqrt{\phi^{'2}(t)+\psi^{'2}}\mathrm{d}t \quad (\alpha < \beta).\qquad\qquad(1-1) Lf(x,y)ds=αβf[ϕ(t),ψ(t)]ϕ2(t)+ψ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值