机器学习——正则化的线性模型

问:岭回归是在代价函数中使用了 L 1正则化项,请计算以下权重参数的 L 1正则化结果: w ={1,4.5,-1,10,0.5,-5)

答:L1正则化则是将权重参数的L1范数(绝对值之和)加入到代价函数中。

如果要计算给定权重参数w的L1范数,可以使用以下公式:

||w||_1 = |1| + |4.5| + |-1| + |10| + |0.5| + |-5| = 22

因此,该权重参数的L1正则化结果为22

岭回归基本原理

【岭回归一(Ridge Regression)】:正则化的线性模型
岭回归(RidgeQRegression))是一种用于处理线性回归问题的正则化方式。在普通的线性回归中,当特征数大于样本数时,模型会出现过拟合的问题。而岭回归通过限制参数的大小,可以有效地避免过拟合问题。
岭回归的实现方式是给损失函数添加一个正则项,这个正则项包含所有参数的平方和,并乘以一个系数alpha。
alpha的值越大,惩罚力度越大,参数越趋向于0,就越容易解决过拟合的问题。

 

要计算给定权重参数w的L1范数,可以使用以下公式:

||w||_1 = |w_1| + |w_2| + ... + |w_n|

L1范数是指向量中各个元素绝对值的和,可以用以下公式计算:

||w||1 = ∑|w[i]|

其中,w[i]表示向量w中的第i个元素。

例如,对于向量w = [1, -2, 3, -4, 5],其L1范数为:

||w||1 = |1| + |-2| + |3| + |-4| + |5| = 15

L1范数
L1范数表示向量中每个元素绝对值的和:

L1范数的解通常是稀疏性的,倾向于选择数目较少的一些非常大的值或者数目较多的insignificant的小值。

 

L2范数
L2范数即欧氏距离:

L2范数越小,可以使得w的每个元素都很小,接近于0,但L1范数不同的是他不会让它等于0而是接近于0.

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肉肉肉肉肉肉~丸子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值