一、下载Anaconda
在官方网站(Free Download | Anaconda)上下载适用于你的操作系统的 Anaconda 安装包。
(以windows为例)
二、安装Anaconda及验证
2.1 这里安装教程很多,可自行搜索。
我自己的安装路径在D盘。
安装conda搭建python环境(保姆级教程)_conda创建python虚拟环境-CSDN博客
2.2 验证是否安装成功
打开win键,找到“Anaconda Prompt”,单击进去。
输入以下几条命令验证(注意是大写 V):
conda -V
python -V
2.3 为Anaconda添加国内源
原文链接:https://blog.csdn.net/Little_Carter/article/details/131031595
(查看自己添加的国内源镜像)
conda config --show channels
(删除所有自己添加的国内源镜像)
conda config --remove-key channels
(添加和配置国内源镜像)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
(配置并确认国内源镜像)
conda config --set show_channel_urls yes
(再次输入查看自己添加的国内源镜像的命令)
conda config --show channels
三、conda配置python环境
3.1 打开win键,找到“Anaconda Prompt”,单击进去。"py36"为环境名称,可以自行设置的。
conda create -n py36 python=3.6
3.2 “conda activate py36”可以进入你创建的这个环境。
(base) C:\Users\xiaoma.LAPTOP-MOAKEIHC>conda activate py36
(py36) C:\Users\xiaoma.LAPTOP-MOAKEIHC>
3.3 “conda list”看环境中有哪些工具包,里面没有我们需要的pytorch.
conda list
四、pytorch安装
4.1 进入官网 http://pytorch.org
我们需要知道自己GPU型号,看自己是否有英伟达的显卡。
如果没有的话,在“CUDA”那儿选择“CPU” ,有的话,要先注意看你的GPU是否支持CUDA,然后自行选择版本(网上会有一些推荐版本)。
当前页面有你需要的,就复制紫色框内容;需要以前的版本,就点击蓝色框去找需要的。
Python、PyTorch与cuda的版本对应表:
Python、PyTorch与cuda的版本对应表_pytorch和cuda对应版本-CSDN博客
4.2 复制内容到“Anaconda Prompt”下载
4.3 检验安装是否成功
命令行窗口输入“python”,然后输入“import torch”,没有报错的话,说明 pytorch 安装成功。
(py36) C:\Users\xiaoma.LAPTOP-MOAKEIHC>python
Python 3.6.2 |Continuum Analytics, Inc.| (default, Jul 20 2017, 12:30:02) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>>
接下来看 pytorch 是否能用我们的GPU,输入命令:
torch.cuda.is_available()
(py36) C:\Users\xiaoma.LAPTOP-MOAKEIHC>python
Python 3.6.2 |Continuum Analytics, Inc.| (default, Jul 20 2017, 12:30:02) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
>>>
返回“True”的话,GPU能被pytorch使用。
4.4 问题报错:
1、在进行“torch.cuda.is_available()” 指令后报错:
The NVIDIA driver on your system is too old (found version 8000).Please update your GPU driver by downloading and installing a new version from the URL.
是因为pyorch和cuda版本不兼容,可查看这篇:https://blog.csdn.net/JLU_zhujjie/article/details/121675376
2、torch.cuda.is_available()返回false——解决办法
torch.cuda.is_available()返回false——解决办法_cuda available false-CSDN博客
五、 在Anaconda上更换python版本
可以看这篇,我理解的就是相当于新建一个环境,前面的重头再来一遍。
k详解Anaconda + 如何在Anaconda上更换python版本_anaconda改变python版本-CSDN博客
切换环境命令: conda activate <环境名称>