知识点
- 构建了函数与导数的关系,特例与推广之间的关系
- 注意极值的定义
- 若函数可导,则极值点→驻点
- 若函数不一定可导,则极值点与驻点无关系
- 只有导数为0的点和不可导点才是可能的极值点
- 第三充分条件可通过,皮亚诺余项泰勒公式和极值定义证明
- 凸凹性就是切线与弦的关系
- 二阶导数变号
- 二阶导为0且三阶导不为0,或者奇数阶导为0(类比极值点第三充分条件),或者二阶不可导的点
题型
- 偶函数
- 隐函数求二阶导时,注意一阶导在该点若为0,那么一阶导为系数的项,则不用完全求导,其他提前得了0的项也类似,具体见李正元例4.15及其后面的评注
- 举例法
- 注意本题是二阶连续导,所以二阶导为0,但是去心邻域内大于0
- 二阶导连续
- 经典错误,有二阶导,没说二阶导是否连续,只能用一次洛必达
- 利用保号性,分别讨论 a > 0 a>0 a>0, a < 0 a<0 a<0的情况,确定 f ( x 0 + h ) f(x_0+h) f(x0+h) f ( x 0 ) f(x_0) f(x0)在邻域内的大小关系,根据极值定义即可得出结果
- f ′ ′ ( x ) = s i n x − [ f ′ ( x ) ] 2 f''(x)=sinx-[f'(x)]^{2} f′′(x)=sinx−[f′(x)]2,可导-可导=可导,所以 f ( x ) f(x) f(x)三阶可导
- n为奇数,导数不为0是拐点,偶数不为0是极值点
- 注意 t t t与 x x x的关系,然后再通过 t t t的范围来确定 x x x的范围
- 求极限的功夫要过关
- 斜渐近线另一种求法,把原函数改写成 y = a x + b + α ( x ) y=ax+b+α(x) y=ax+b+α(x),( x → + ∞ x→+∞ x→+∞时, α ( x ) → 0 α(x)→0 α(x)→0),则 y = a x + b y=ax+b y=ax+b就是斜渐近线
- 用一步泰勒公式
- 注意 e e e的无穷次方要分正负!!!
- 偶函数,对称美!所以渐近线也是对称的
- a r c t a n x arctanx arctanx的无穷次方也要注意正负!!!
- a r c t a n x + a r c t a n 1 x = π 2 arctanx+arctan\frac{1}{x}=\frac{\pi}{2} arctanx+arctanx1=2π
- 罗尔定理推论,直接用
假设有 n + 1 n+1 n+1个零点,则反复使用罗尔定理可得出, n n n阶导数有一个0点,与条件矛盾
- 零点定理:①连续②异号
- 罗尔定理:要找个原函数(闭区间连续,开区间可导,端点值相等)
- 罗尔定理
- 对数比幂函数趋近0的速度快(见李正元例1.37)
- [ 0 , 1 ] [0,1] [0,1]区间 t 2 t^{2} t2比 t t t小
- 注意找好判定正负的点
-
罗尔定理推论
-
根据极值的定义,端点不可能是极值点!
- 罗尔定理推论
- 用反证法也可,假设还有个零点,则两个零点之间存在导数为0的点,与条件矛盾
- 用拉格朗日余项的泰勒公式证有一个点的值小于0(在题目给出信息最多的点展开)
- 拉格朗日中值定理
- 李正元例4.23
- 泰勒公式
- 拉格朗日
- 唯一极值点就是最值点
- 凹凸性,切线与割线的关系
- 凹凸性
罗尔定理
- a , b a,b a,b同号所以 ξ \xi ξ不可能是0
- 可用拉格朗日或者罗尔定理
- ξ f ′ ( ξ ) + n f ( ξ ) = 0 {\xi}f'(\xi)+nf(\xi)=0 ξf′(ξ)+nf(ξ)=0,令 F ( x ) = x n f ( x ) F(x)=x^{n}f(x) F(x)=xnf(x)
- 利用积分中值定理再找个零点
- 第一步的分段构造函数方法类似李正元例4.34
- ξ f ′ ( ξ ) − n f ( ξ ) = 0 {\xi}f'(\xi)-nf(\xi)=0 ξf′(ξ)−nf(ξ)=0,令 F ( x ) = f ( x ) x n F(x)=\frac{f(x)}{x^{n}} F(x)=xnf(x)
- 方法+规律
拉格朗日中值定理、柯西中值定理
- 注意第一问的结论
- 根据逆推法分析出分界点,且保证分界点是存在的
- 互不相同很重要!!!相同就变成简单题了
泰勒中值定理
- 套个绝对值,取两个
f
′
′
(
ξ
)
f''(\xi)
f′′(ξ)中大的那个,放大一次,
∣ f ( b ) − f ( a ) ∣ < = ( b − a ) 2 8 ( ∣ f ′ ′ ( ξ 1 ) ∣ + ∣ f ′ ′ ( ξ 2 ) ∣ < = 2 m a x { f ′ ′ ( ξ 1 ) , f ′ ′ ( ξ 2 ) } |f(b)-f(a)|<=\frac{(b-a)^{2}}{8}(|f''(\xi_1)|+|f''(\xi_2)|<=2max\{f''(\xi_1),f''(\xi_2)\} ∣f(b)−f(a)∣<=8(b−a)2(∣f′′(ξ1)∣+∣f′′(ξ2)∣<=2max{f′′(ξ1),f′′(ξ2)}
- 提供信息一样多,就选有导数值的那个点