导数应用

本文深入探讨了函数极值与导数的密切联系,阐述了在可导与不可导情况下极值点的特征。讨论了二阶导数与函数凸凹性的关系,以及泰勒公式在确定极值点中的作用。同时,提到了罗尔定理、拉格朗日中值定理等在求解极值问题中的应用,并分析了各种函数类型的极值点和渐近线的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识点

  • 构建了函数与导数的关系,特例与推广之间的关系

  • 注意极值的定义
  • 若函数可导,则极值点→驻点
  • 若函数不一定可导,则极值点与驻点无关系
  • 只有导数为0的点和不可导点才是可能的极值点

  • 第三充分条件可通过,皮亚诺余项泰勒公式和极值定义证明

  • 凸凹性就是切线与弦的关系

  • 二阶导数变号

  • 二阶导为0且三阶导不为0,或者奇数阶导为0(类比极值点第三充分条件),或者二阶不可导的点


题型

  • 偶函数

  • 隐函数求二阶导时,注意一阶导在该点若为0,那么一阶导为系数的项,则不用完全求导,其他提前得了0的项也类似,具体见李正元例4.15及其后面的评注

  • 举例法
  • 注意本题是二阶连续导,所以二阶导为0,但是去心邻域内大于0

  • 二阶导连续

  • 经典错误,有二阶导,没说二阶导是否连续,只能用一次洛必达

  • 利用保号性,分别讨论 a > 0 a>0 a>0, a < 0 a<0 a<0的情况,确定 f ( x 0 + h ) f(x_0+h) f(x0+h) f ( x 0 ) f(x_0) f(x0)在邻域内的大小关系,根据极值定义即可得出结果

  • f ′ ′ ( x ) = s i n x − [ f ′ ( x ) ] 2 f''(x)=sinx-[f'(x)]^{2} f(x)=sinx[f(x)]2,可导-可导=可导,所以 f ( x ) f(x) f(x)三阶可导
  • n为奇数,导数不为0是拐点,偶数不为0是极值点

  • 注意 t t t x x x的关系,然后再通过 t t t的范围来确定 x x x的范围

  • 求极限的功夫要过关

  • 斜渐近线另一种求法,把原函数改写成 y = a x + b + α ( x ) y=ax+b+α(x) y=ax+b+α(x),( x → + ∞ x→+∞ x+时, α ( x ) → 0 α(x)→0 α(x)0),则 y = a x + b y=ax+b y=ax+b就是斜渐近线

  • 用一步泰勒公式

  • 注意 e e e的无穷次方要分正负!!!

  • 偶函数,对称美!所以渐近线也是对称的
  • a r c t a n x arctanx arctanx的无穷次方也要注意正负!!!

  • a r c t a n x + a r c t a n 1 x = π 2 arctanx+arctan\frac{1}{x}=\frac{\pi}{2} arctanx+arctanx1=2π

  • 罗尔定理推论,直接用

假设有 n + 1 n+1 n+1个零点,则反复使用罗尔定理可得出, n n n阶导数有一个0点,与条件矛盾

  • 零点定理:①连续②异号
  • 罗尔定理:要找个原函数(闭区间连续,开区间可导,端点值相等)

  • 罗尔定理

  • 对数比幂函数趋近0的速度快(见李正元例1.37)

  • [ 0 , 1 ] [0,1] [0,1]区间 t 2 t^{2} t2 t t t

  • 注意找好判定正负的点

  • 罗尔定理推论

  • 根据极值的定义,端点不可能是极值点!

  • 罗尔定理推论
  • 用反证法也可,假设还有个零点,则两个零点之间存在导数为0的点,与条件矛盾

  • 用拉格朗日余项的泰勒公式证有一个点的值小于0(在题目给出信息最多的点展开)

  • 拉格朗日中值定理

  • 李正元例4.23

  • 泰勒公式
  • 拉格朗日
  • 唯一极值点就是最值点

  • 凹凸性,切线与割线的关系

  • 凹凸性

罗尔定理

  • a , b a,b a,b同号所以 ξ \xi ξ不可能是0

分析法

微分方程法

  • 可用拉格朗日或者罗尔定理

  • ξ f ′ ( ξ ) + n f ( ξ ) = 0 {\xi}f'(\xi)+nf(\xi)=0 ξf(ξ)+nf(ξ)=0,令 F ( x ) = x n f ( x ) F(x)=x^{n}f(x) F(x)=xnf(x)

  • 利用积分中值定理再找个零点

  • 第一步的分段构造函数方法类似李正元例4.34
  • ξ f ′ ( ξ ) − n f ( ξ ) = 0 {\xi}f'(\xi)-nf(\xi)=0 ξf(ξ)nf(ξ)=0,令 F ( x ) = f ( x ) x n F(x)=\frac{f(x)}{x^{n}} F(x)=xnf(x)

  • 方法+规律

拉格朗日中值定理、柯西中值定理

  • 注意第一问的结论

  • 根据逆推法分析出分界点,且保证分界点是存在的
  • 互不相同很重要!!!相同就变成简单题了

直接证第二问?

分析出分界点


泰勒中值定理

  • 套个绝对值,取两个 f ′ ′ ( ξ ) f''(\xi) f(ξ)中大的那个,放大一次,
    ∣ f ( b ) − f ( a ) ∣ < = ( b − a ) 2 8 ( ∣ f ′ ′ ( ξ 1 ) ∣ + ∣ f ′ ′ ( ξ 2 ) ∣ < = 2 m a x { f ′ ′ ( ξ 1 ) , f ′ ′ ( ξ 2 ) } |f(b)-f(a)|<=\frac{(b-a)^{2}}{8}(|f''(\xi_1)|+|f''(\xi_2)|<=2max\{f''(\xi_1),f''(\xi_2)\} f(b)f(a)<=8(ba)2(f(ξ1)+f(ξ2)<=2max{f(ξ1),f(ξ2)}

  • 提供信息一样多,就选有导数值的那个点
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值