>> %符号解析解-->精确解
>> %数值运算,数值解-->近似解
>> %遗憾的是,很多数学模型还不能精确求解,遇到这种情况,多数情况下唯一的选择就是建立逼近精确解的数值解
>> %借助有限差分逼近(finite-difference-approximation)
建立函数文件
注意:不要去改函数文件名称,它适合函数对应的,如果改变,运行时会找不到函数
%函数文件:输入参数、输出参数
function vt=bungeeS(m,cd,th,tend)
%% m表示蹦极运动员的质量,cd是集总阻力系数,th表示时间步长,tend表示时间在tend秒之前
g=9.81; %重力加速度
i=1;
vbefore=0; %相当于迭代公式的v(ti)
vnext=0; %相当于迭代公式的v(t(i+1))
for ti=0:th:tend
vnext = vbefore+(g-cd/m*vbefore^2)*th; %迭代公式
vt(i,1)=ti; %第一列存储时间
vt(i,2)=vbefore; %第二列存储对应时刻的速度值
i=i+1;
vbefore=vnext; %速度值的迭代
end
%% 蹦极运动员速度值可视化
plot(vt(:,1),vt(:,2),'r-','LineWidth',2)
end
然后在命令行窗口运行
>> vt=bungeeS(68.1,0.25,1,20)
vt =
0 0
1.0000 9.8100
2.0000 19.2667
3.0000 27.7140
4.0000 34.7044
5.0000 40.0930
6.0000 44.0019
7.0000 46.7041
8.0000 48.5065
9.0000 49.6789
10.0000 50.4287
11.0000 50.9030
12.0000 51.2008
13.0000 51.3870
14.0000 51.5031
15.0000 51.5753
16.0000 51.6202
17.0000 51.6481
18.0000 51.6654
19.0000 51.6762
20.0000 51.6828
蹦极运动员速度可视化
hold on %保持当前图形不变,再添加图形元素
>> bengS
sol =
(g^(1/2)*m^(1/2)*tanh((cd^(1/2)*g^(1/2)*t)/m^(1/2)))/cd^(1/2)
vt =
(10^(1/2)*681^(1/2)*981^(1/2)*tanh((10^(1/2)*681^(1/2)*981^(1/2)*t)/13620))/50
limS =
51.6938
>> hold on
>> vt=bungeeS(68.1,0.25,1,20)
vt =
0 0
1.0000 9.8100
2.0000 19.2667
3.0000 27.7140
4.0000 34.7044
5.0000 40.0930
6.0000 44.0019
7.0000 46.7041
8.0000 48.5065
9.0000 49.6789
10.0000 50.4287
11.0000 50.9030
12.0000 51.2008
13.0000 51.3870
14.0000 51.5031
15.0000 51.5753
16.0000 51.6202
17.0000 51.6481
18.0000 51.6654
19.0000 51.6762
20.0000 51.6828
可以看出精确解和近似解的图像误差较大,可以通过缩小th的值,这样可以缩小误差
>> figure %建立一个新图像
>> bengS
sol =
(g^(1/2)*m^(1/2)*tanh((cd^(1/2)*g^(1/2)*t)/m^(1/2)))/cd^(1/2)
vt =
(10^(1/2)*681^(1/2)*981^(1/2)*tanh((10^(1/2)*681^(1/2)*981^(1/2)*t)/13620))/50
limS =
51.6938
>> hold on
>> vt=bungeeS(68.1,0.25,0.1,20)
vt =
0 0
0.1000 0.9810
0.2000 1.9616
0.3000 2.9412
0.4000 3.9191
0.5000 4.8944
0.6000 5.8666
0.7000 6.8350
0.8000 7.7988
0.9000 8.7575
1.0000 9.7104
1.1000 10.6567
1.2000 11.5961
1.3000 12.5277
1.4000 13.4511
1.5000 14.3657
1.6000 15.2709
1.7000 16.1663
1.8000 17.0513
1.9000 17.9256
2.0000 18.7886
2.1000 19.6400
2.2000 20.4794
2.3000 21.3065
2.4000 22.1208
2.5000 22.9222
2.6000 23.7103
2.7000 24.4849
2.8000 25.2458
2.9000 25.9929
3.0000 26.7258
3.1000 27.4446
3.2000 28.1491
3.3000 28.8392
3.4000 29.5149
3.5000 30.1761
3.6000 30.8228
3.7000 31.4550
3.8000 32.0728
3.9000 32.6762
4.0000 33.2652
4.1000 33.8400
4.2000 34.4006
4.3000 34.9472
4.4000 35.4798
4.5000 35.9987
4.6000 36.5040
4.7000 36.9958
4.8000 37.4743
4.9000 37.9398
5.0000 38.3924
5.1000 38.8322
5.2000 39.2597
5.3000 39.6748
5.4000 40.0780
5.5000 40.4693
5.6000 40.8491
5.7000 41.2175
5.8000 41.5748
5.9000 41.9213
6.0000 42.2571
6.1000 42.5826
6.2000 42.8980
6.3000 43.2034
6.4000 43.4992
6.5000 43.7855
6.6000 44.0627
6.7000 44.3310
6.8000 44.5905
6.9000 44.8416
7.0000 45.0844
7.1000 45.3193
7.2000 45.5463
7.3000 45.7657
7.4000 45.9778
7.5000 46.1828
7.6000 46.3808
7.7000 46.5721
7.8000 46.7568
7.9000 46.9353
8.0000 47.1076
8.1000 47.2739
8.2000 47.4345
8.3000 47.5895
8.4000 47.7391
8.5000 47.8834
8.6000 48.0227
8.7000 48.1571
8.8000 48.2867
8.9000 48.4118
9.0000 48.5324
9.1000 48.6487
9.2000 48.7609
9.3000 48.8690
9.4000 48.9733
9.5000 49.0739
9.6000 49.1708
9.7000 49.2642
9.8000 49.3542
9.9000 49.4410
10.0000 49.5247
10.1000 49.6053
10.2000 49.6829
10.3000 49.7578
10.4000 49.8299
10.5000 49.8993
10.6000 49.9663
10.7000 50.0307
10.8000 50.0928
10.9000 50.1527
11.0000 50.2103
11.1000 50.2658
11.2000 50.3192
11.3000 50.3707
11.4000 50.4203
11.5000 50.4680
11.6000 50.5140
11.7000 50.5582
11.8000 50.6009
11.9000 50.6419
12.0000 50.6814
12.1000 50.7195
12.2000 50.7561
12.3000 50.7914
12.4000 50.8253
12.5000 50.8580
12.6000 50.8895
12.7000 50.9198
12.8000 50.9489
12.9000 50.9770
13.0000 51.0040
13.1000 51.0300
13.2000 51.0550
13.3000 51.0791
13.4000 51.1023
13.5000 51.1246
13.6000 51.1461
13.7000 51.1668
13.8000 51.1867
13.9000 51.2058
14.0000 51.2243
14.1000 51.2420
14.2000 51.2591
14.3000 51.2755
14.4000 51.2913
14.5000 51.3065
14.6000 51.3212
14.7000 51.3353
14.8000 51.3488
14.9000 51.3619
15.0000 51.3744
15.1000 51.3865
15.2000 51.3981
15.3000 51.4093
15.4000 51.4201
15.5000 51.4304
15.6000 51.4404
15.7000 51.4500
15.8000 51.4592
15.9000 51.4681
16.0000 51.4767
16.1000 51.4849
16.2000 51.4928
16.3000 51.5004
16.4000 51.5077
16.5000 51.5148
16.6000 51.5216
16.7000 51.5281
16.8000 51.5344
16.9000 51.5404
17.0000 51.5462
17.1000 51.5518
17.2000 51.5572
17.3000 51.5624
17.4000 51.5673
17.5000 51.5721
17.6000 51.5767
17.7000 51.5812
17.8000 51.5854
17.9000 51.5896
18.0000 51.5935
18.1000 51.5973
18.2000 51.6010
18.3000 51.6045
18.4000 51.6079
18.5000 51.6111
18.6000 51.6143
18.7000 51.6173
18.8000 51.6202
18.9000 51.6230
19.0000 51.6256
19.1000 51.6282
19.2000 51.6307
19.3000 51.6331
19.4000 51.6354
19.5000 51.6376
19.6000 51.6398
19.7000 51.6418
19.8000 51.6438
19.9000 51.6457
20.0000 51.6475
>>
图像曲线带标注,注意legend函数的用法,这里是先运行bengS文件,再是bugeeS函数,前者文件里有两个plot,注意对应关系
>> legend('解析解','12s时刻速度值','近似解','Location','best')
>> legend('boxoff')
取消方格
>> grid off