Python光谱数据处理
文章平均质量分 90
nnerddboy
病的是这个世界,为什么吃药的是我
展开
-
大话光学原理:4.散射:瑞利、拉曼、米氏和布里渊
本文探索了光的散射现象及其在自然界中的表现,从瑞利散射解释的蓝天,到米氏散射揭示的白云,再到拉曼散射和布里渊散射的发现故事。瑞利散射揭示了天空为何呈现蓝色,而米氏散射则解释了云朵的洁白无瑕。拉曼散射深入探讨了海水蓝色的成因,而布里渊散射则展示了声波如何影响光的频率,为光学和声学之间的联系提供了新的视角。这些散射现象不仅丰富了我们对光的理解,也为科学研究和实际应用开辟了新的道路。原创 2024-07-10 00:57:32 · 2512 阅读 · 0 评论 -
大话光学原理:3.干涉与衍射
本文以小说的形式生动地描述了光的干涉与衍射现象,以及这些现象背后的科学原理。文章首先介绍了托马斯·杨的双缝干涉实验,展示了光如何通过狭缝形成明暗交替的条纹,从而支持了光的波动理论。接着,文章讲述了奥古斯丁·菲涅尔如何通过实验和理论推导,进一步证实了光的波动性,并提出了光是横波的假设。此外,文章还提到了泊松亮斑的发现,这是光衍射现象的一个显著例子,它不仅挑战了传统的微粒说,也为波动说提供了有力的支持。最后,文章探讨了光在真空中的传播问题,提出了光可能以粒子形式存在的观点,为光的本质之谜增添了新的思考角度。原创 2024-07-09 21:53:50 · 1165 阅读 · 0 评论 -
大话光学原理:2.最短时间原理、“魔法石”与彩虹
本文以小说的形式,生动地描绘了光的最短时间原理及其在物理学史上的深远影响。文章首先介绍了费马最短时间原理的诞生,这一原理揭示了光在两点间选择路径时总是追求最短时间的特性,引发了关于光如何预知路径和应对变数的深刻思考。接着,文章通过伽利略的故事,展示了光的新理论——微粒说,这一理论认为光是由无数微小颗粒组成,挑战了传统观念,并为后来的物理学发展奠定了基础。最后,文章通过牛顿的三棱镜实验,展示了光如何被分解成彩虹的七种颜色,进一步阐释了光的折射原理和其多样性。原创 2024-07-09 21:40:05 · 878 阅读 · 0 评论 -
大话光学原理:1.“实体泛光说”、反射与折射
本文以小说的形式,讲述了光学原理的相关知识。在古希腊,智者们曾设想眼睛能发出光线,如同触手般捕捉物体,但这一理论因逻辑矛盾而瓦解。后来,人们认为视觉是由物体表面微光穿透眼睛所致,暗示万物皆发光。随着光学工具的发展,人类认识到视觉是外部光线激发视网膜的结果,黑暗是光源消失或被遮挡。反射与折射揭示了光线的行为:反射中,反射角等于入射角;折射中,折射角随入射角变化。斯涅耳定律解释了折射现象,表明光线偏转取决于介质。光的本质和物体是否自发发光仍是未解之谜。原创 2024-07-09 21:30:44 · 901 阅读 · 0 评论 -
红外光气体检测:1.分子振动与红外吸收、检测系统的基本模型和红外敏感元件
本文简述了分子振动与红外吸收的关联,强调了分子偶极矩变化对红外光谱的重要性。红外光谱的产生基于分子振动能级的跃迁,需吸收或释放光量子。双原子分子的伸缩振动频率受化学键强度和原子质量影响。红外吸收光谱的产生需分子振动时偶极矩变化。气体检测模型显示透射光强度随气体浓度增加而减少。红外探测器设计考虑比探测率和等效噪声功率,热释电探测器利用温度变化产生电流。滤光片和放大器增益是探测器信号处理的关键。探测器性能通过频率与热响应及探测率关系进行测试与分析。原创 2024-07-09 02:37:10 · 650 阅读 · 0 评论 -
近红外光谱脑功能成像(fNIRS):2.实验设计、指标计算与多重比较
近红外光谱成像(INIRS)技术在脑功能研究中具有重要应用,但其数据分析需精心设计实验和严格控制多重比较问题。通过一般线性模型(GLM)分析个体血液动力学响应,研究者可以量化不同刺激对大脑的影响。多重比较校正如FWE和FDR校正确保了在多通道数据分析中,假阳性结果的概率得到有效控制,提高了研究的可靠性。Python代码示例展示了如何模拟INIRS数据,进行GLM分析,以及如何应用FWE和FDR校正方法来处理多重比较问题,最终通过图形直观展示原始和校正后的p值,帮助研究者更好地理解和解释实验结果。原创 2024-07-09 00:59:47 · 3207 阅读 · 0 评论 -
近红外光谱脑功能成像(fNIRS):1.光学原理、变量选取与预处理
近红外光谱脑功能成像(fNIRS):1.光学原理、变量选取与预处理及Python代码实现原创 2024-07-03 21:01:22 · 2191 阅读 · 0 评论 -
光谱数据处理:4.七种预处理方法及其python实现
七种光谱数据预处理方法及其python实现,包括:基线校正、噪声降低、归一化、标准正态变量变换、多元散射校正、导数光谱和去卷积原创 2024-03-02 03:37:06 · 15560 阅读 · 20 评论 -
光谱数据处理:3.利用PLSR模型进行属性预测与关联分析
利用PLSR模型进行光谱数据的两个应用及Python代码实现:应用一:比较光谱数据预测值与真实值的关系;应用二:建立样品属性与光谱数据的相关关系。原创 2024-02-28 00:53:04 · 2516 阅读 · 0 评论 -
光谱数据处理:2.数据准确度评价指标的Python计算
通过Python实现对光谱数据的测量值与预测值之间的三大准确度评价指标的计算,三大准确度指标为:相关系数R²、交叉验证均方根误差RMSECV和Clarke 误差网格。原创 2024-02-25 04:30:11 · 1774 阅读 · 0 评论 -
光谱数据处理:1.特征波长优选的不同方法与Python实现
五种光谱数据的特征波长优选方法与Python实现,五种方法分别是主成分分析法(PCA)、协同区间偏最小二乘法(SiPLS)、连续投影算法(SPA)、竞争自适应重采样算法(CARS)和随机蛙跳算法(Random-Frog)。原创 2024-02-25 02:44:10 · 8062 阅读 · 17 评论