RMS就是均方根。在数据统计分析中,将所有值平方求和,求其均值,再开平方,就得到均方根值。在物理学中,我们常用均方根值来分析噪声。同时,它也是定义AC波的有效电压或电流的一种最普遍的数学方法。
均方根的作用:
均方根误差用于衡量观测值同真值之间的偏差。
在物理学中,除讨论过电流在一个周期上的平均值外,还常考虑电流有效值,周期性非恒定电流的有效值规定为:当在其一个周期内,在负载电阻R上消耗的平均功率等于取固定值的直流电流在R上消耗的功率时,称这个值为有效值。
均方根值是对信号波形或的平方求平均值,均方根值也称有效值,它可以指示信号发送功率的能力。不管什么波形,具有相同均方眼值的信号发送到阻性负载上的功率是相同的。
扩展
均方根常用来计算一组数据和某个数据的“平均差”。像交流电的电压、电流数值以及均匀加速直线运动的位移中点平均速度,都是以其实际数值的均方根表示。
例如“220V交流电”表示电压信号的均方根(又称为有效值)为220V,此为交流电瞬时值(瞬时值又称暂态值)的最大值(峰值)。
均方根值并非所有模型均适用, 只有在数值分布呈现正态分布时才适用。如果分布呈现方波、三角波,那就要用其他的公式, 否则失真会很大。
以均方根计算平均值, 这是预先假设数据为正态分布的结果,实际情况不一定完全适用。 如数据分布极为平均或呈现多峰状(如某些数据的个数远远超过其他值), 均方根值就无法真实表现出这组数据的平均值。