标准化与归一化公式

数据预处理是机器学习中至关重要的一环,其中标准化和归一化是两种常见的数据转换方法。它们都是针对单个特征进行操作,旨在改善模型的精度和收敛速度。归一化通过将数据映射到0-1区间,而标准化则使数据服从标准正态分布,即均值为0,方差为1。这两种方法对于提升模型性能和加快学习速度有显著效果,尤其适用于数值型特征的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相同点:无论标准化还是归一化都是针对某一列数据进行处理的,即对某个特征进行处理。

归一化公式:将数据映射到(0,1)上

标准化公式:类似于标准正态分布过程,将这列数据处理成均值为0,方差为1。

好处:1,提升模型精度。2,提升收敛速度。3,更适用于机器学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值