K-均值聚类(K-means clustering)是一种常用的无监督学习算法,用于将数据集划分为K个不相交的簇。K-均值聚类算法的核心思想是通过计算数据点之间的距离来确定数据点所属的簇。具体过程如下:
- 随机选择K个初始聚类中心点。
- 对每个数据点,计算其与所有聚类中心点的距离,并将其划分到距离最近的聚类中心所代表的簇中。
- 更新每个簇的聚类中心点为该簇中所有数据点的均值。
- 重复步骤2和3,直到聚类结果不再变化或达到最大迭代次数。
K-均值聚类算法的优点包括:
- 简单且易于理解和实现。
- 可以有效地处理大规模数据集。
- 对于没有标签的数据,可以提供合理的聚类结果。
然而,K-均值聚类算法也存在一些缺点:
- 需要预先指定簇的个数K,但在实际应用中,往往无法确定合适的K值。
- 对于具有不规则形状的簇,或具有不同密度的簇,K-均值聚类效果会受到影响。
- 对于离群点(outlier)比较敏感,可能会导致聚类结果不准确。
为了克服K-均值聚类算法的缺点,还有一些改进的方法,如层次聚类、密度聚类等,可以根据实际需求选择合适的聚类算法。