dijkstra及其堆优化

dijkstra及其堆优化

dijkstra算法思想

先建立一个dist数组表示和起点相连的各个点之间的最小值,先加入起点及其相连的点之间的距离,其他的赋值为inf(无穷大),开始在dist数组中扫描到距离最小的点,将其标记如最小生成树中,再看是否可以对其他点进行松弛操作;一直重复到所有点全部被标记结束。操作完之后dist[i]中存的就是和起点到 i 点的最小值。

dijkstra的实现

例题:

A - 畅通工程续 HDU - 1874

Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

Input 本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1

代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N=205;
const int inf=9999999;
int n,m,u,v,t,map[N][N],vis[N],dist[N];
void dijkstra(){
    memset(vis,0,sizeof(vis));
    for(int i=0;i<n;i++){
        dist[i]=map[u][i];
    }
    dist[u]=0;
    vis[u]=1;
    for(int i=0;i<n;i++){
        int minn=inf;
        for(int j=0;j<n;j++){
            if(!vis[j]&&minn>dist[j]){
                minn=dist[j];
                t=j;
            }
        }
        vis[t]=1;
        for(int j=0;j<n;j++){
            if(!vis[j]&&map[t][j]<inf&&map[t][j]+dist[t]<dist[j]){
                dist[j]=dist[t]+map[t][j];
            }
        }
    }
    if(dist[v]==inf)
        cout << -1 << endl;
    else cout << dist[v] << endl;
}
int main(){
    while(cin >>  n >> m){
        for(int i=0;i<=n;i++){
            for(int j=0;j<=n;j++){
                if(i==j)
                    map[i][j]=0;
                else map[i][j]=inf;
            }
        }
        for(int i=0;i<m;i++){
            int a,b,s;
            cin >> a >> b >> s;
            if(map[a][b]>s){
                map[a][b]=map[b][a]=s;
            }
        }
        cin >> u >> v;
        dijkstra();
    }
}

dijkstra的堆优化

优化方法

用优先队列的top()(每次弹出队列中的最小值)代替扫描的过程,并且用邻接表代替邻接矩阵

例题:

P3371 【模板】单源最短路径

题目背景
本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779。

题目描述
如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。

输入格式
第一行包含三个整数 n,m,sn,m,s,分别表示点的个数、有向边的个数、出发点的编号。

接下来 mm 行每行包含三个整数 u,v,wu,v,w,表示一条 u \to vu→v 的,长度为 ww 的边。

输出格式
输出一行 nn 个整数,第 ii 个表示 ss 到第 ii 个点的最短路径,若不能到达则输出 2^{31}-12
31
−1。

输入输出样例
输入 #1
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
输出 #1
0 2 4 3

代码如下:
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
const int N=100100;
const int M=500050;
const int inf=(1<<31)-1;
int n,m,s;
int v[M],w[M],ne[M],h[M],dist[N],idx;
bool vis[N];
struct node{
    int key,dis;//dis是点,key是起点到dis的距离
    bool operator<(const node&t)const{//优先队列默认弹出最大的值所以要重载一下小于号,让他弹出key值最小的点
        return key>t.key;
    }
};
void add(int a,int b, int t){
    v[idx]=b,w[idx]=t,ne[idx]=h[a],h[a]=idx++;//将边的数据存入邻接表;
}
void dijkstra(){
    for(int i=1;i<=n;i++){
        dist[i]=inf;
    }
    dist[s]=0;
    priority_queue<node>q;
    node a;
    a.key=0,a.dis=s;
    q.push(a);
    while(!q.empty()){
        a=q.top();
        q.pop();
        int x=a.dis,y=a.key;
        if(vis[x])//标记过的已经进行过作为起点松弛过其他点了
            continue;
        vis[x]=1;
        for(int i=h[x];i!=-1;i=ne[i]){
            int j=v[i];
            if(dist[j]>y+w[i]){
                dist[j]=y+w[i];
                node b;
                b.key=dist[j],b.dis=j;
                q.push(b);
            }
        }
    }
}
int main(){
    cin >> n >> m >> s;
    memset(h,-1,sizeof(h));
    for(int i=0;i<m;i++){
        int a,b,t;
        cin >> a >> b >> t;
        add(a,b,t);
    }
    dijkstra();
    for(int i=1;i<=n;i++){
        cout << dist[i] << ' ';
    }
    cout << endl;
    return 0;
}

本人菜鸟,有错请帮忙指正!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值