dijkstra及其堆优化
dijkstra算法思想
先建立一个dist数组表示和起点相连的各个点之间的最小值,先加入起点及其相连的点之间的距离,其他的赋值为inf(无穷大),开始在dist数组中扫描到距离最小的点,将其标记如最小生成树中,再看是否可以对其他点进行松弛操作;一直重复到所有点全部被标记结束。操作完之后dist[i]中存的就是和起点到 i 点的最小值。
dijkstra的实现
例题:
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input 本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1
代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N=205;
const int inf=9999999;
int n,m,u,v,t,map[N][N],vis[N],dist[N];
void dijkstra(){
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++){
dist[i]=map[u][i];
}
dist[u]=0;
vis[u]=1;
for(int i=0;i<n;i++){
int minn=inf;
for(int j=0;j<n;j++){
if(!vis[j]&&minn>dist[j]){
minn=dist[j];
t=j;
}
}
vis[t]=1;
for(int j=0;j<n;j++){
if(!vis[j]&&map[t][j]<inf&&map[t][j]+dist[t]<dist[j]){
dist[j]=dist[t]+map[t][j];
}
}
}
if(dist[v]==inf)
cout << -1 << endl;
else cout << dist[v] << endl;
}
int main(){
while(cin >> n >> m){
for(int i=0;i<=n;i++){
for(int j=0;j<=n;j++){
if(i==j)
map[i][j]=0;
else map[i][j]=inf;
}
}
for(int i=0;i<m;i++){
int a,b,s;
cin >> a >> b >> s;
if(map[a][b]>s){
map[a][b]=map[b][a]=s;
}
}
cin >> u >> v;
dijkstra();
}
}
dijkstra的堆优化
优化方法
用优先队列的top()(每次弹出队列中的最小值)代替扫描的过程,并且用邻接表代替邻接矩阵
例题:
题目背景
本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779。
题目描述
如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。
输入格式
第一行包含三个整数 n,m,sn,m,s,分别表示点的个数、有向边的个数、出发点的编号。
接下来 mm 行每行包含三个整数 u,v,wu,v,w,表示一条 u \to vu→v 的,长度为 ww 的边。
输出格式
输出一行 nn 个整数,第 ii 个表示 ss 到第 ii 个点的最短路径,若不能到达则输出 2^{31}-12
31
−1。
输入输出样例
输入 #1
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
输出 #1
0 2 4 3
代码如下:
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
const int N=100100;
const int M=500050;
const int inf=(1<<31)-1;
int n,m,s;
int v[M],w[M],ne[M],h[M],dist[N],idx;
bool vis[N];
struct node{
int key,dis;//dis是点,key是起点到dis的距离
bool operator<(const node&t)const{//优先队列默认弹出最大的值所以要重载一下小于号,让他弹出key值最小的点
return key>t.key;
}
};
void add(int a,int b, int t){
v[idx]=b,w[idx]=t,ne[idx]=h[a],h[a]=idx++;//将边的数据存入邻接表;
}
void dijkstra(){
for(int i=1;i<=n;i++){
dist[i]=inf;
}
dist[s]=0;
priority_queue<node>q;
node a;
a.key=0,a.dis=s;
q.push(a);
while(!q.empty()){
a=q.top();
q.pop();
int x=a.dis,y=a.key;
if(vis[x])//标记过的已经进行过作为起点松弛过其他点了
continue;
vis[x]=1;
for(int i=h[x];i!=-1;i=ne[i]){
int j=v[i];
if(dist[j]>y+w[i]){
dist[j]=y+w[i];
node b;
b.key=dist[j],b.dis=j;
q.push(b);
}
}
}
}
int main(){
cin >> n >> m >> s;
memset(h,-1,sizeof(h));
for(int i=0;i<m;i++){
int a,b,t;
cin >> a >> b >> t;
add(a,b,t);
}
dijkstra();
for(int i=1;i<=n;i++){
cout << dist[i] << ' ';
}
cout << endl;
return 0;
}
本人菜鸟,有错请帮忙指正!!!