卷积神经网络之ONNX格式储存与读取

目录

一.常见的卷积神经网络模型

二.CNN常见的储存格式

三.CNN模型保存为ONNX文件

四.可视化ONNX文件

4.1 python代码调用netron库可视化

4.2 网页直接打开模型文件


一.常见的卷积神经网络模型

卷积神经网络(Convolutional Neural Networks, CNN)以及常见的网络模型具体介绍可移步下面链接了解。

卷积神经网络超详细介绍


二.CNN常见的储存格式


三.CNN模型保存为ONNX文件

如果只是自己测试或训练一些小模型需要用到ONNX文件,可以直接去GitHub搜索"模型.onnx"(比如lenet.onnx),一般可以直接找到对应的文件,下载使用即可。下图是我自己之前在GitHub上搜索到的一些模型。

下面提供可以实现将特定的CNN模型存储为ONNX文件的方法,以VGGNet-16为例

import torchvision
import torch

data = torch.rand(1, 3, 224, 224)
net=torchvision.models.vgg16()
output = net(data)
onnx_path = "vgg16.onnx"

input_names = ["input data"]
output_names = ["output Prediction"]


torch.onnx.export(net, data, onnx_path,input_names=input_names, output_names=output_names)


四.可视化ONNX文件

4.1 python代码调用netron库可视化

netron 是一个用于深度学习模型可视化的工具,有助于直观地查看、分析和理解CNN模型的结构和参数。netron支持下面格式的模型可视化

①命令行直接调用

pip install netron
netron name.onnx

②pycharm中代码调用

#pip install netron
import netron
netron.start("name.onnx")

运行后同样会在localhost:8080界面中显示可视化模型结构图。

4.2 网页直接打开模型文件

Netron 该网站支持上传模型文件,可直接转换为对应的模型结构图,与代码调用显示结果相同。

除在线网站外,netron也有桌面应用程序,如有需要可以自行搜索下载使用。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值