Torch 模型 onnx 文件的导出和调用

Open Neural Network Exchange (ONNX,开放神经网络交换) 格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移

Torch 所定义的模型为动态图,其前向传播是由类方法定义和实现的

但是 Python 代码的效率是比较底下的,试想把动态图转化为静态图,模型的推理速度应当有所提升

Torch 框架中,torch.onnx.export 可以将父类为 nn.Module 的模型导出到 onnx 文件中,最重要的有三个参数:

  • model:父类为 nn.Module 的模型
  • args:传入 model 的 forward 方法的变量列表,类型应为 tuple
  • f:onnx 文件名称的字符串
import torch
from torchvision.models import resnet50

file = 'resnet.onnx'
# 声明模型
resnet = resnet50(pretrained=False).eval()
image = torch.rand([1, 3, 224, 224])
# 导出为 onnx 文件
torch.onnx.export(resnet, (image,), file)

onnx 文件可被 Netron 打开,以查看模型结构

基本用法

要在 Python 中运行 onnx 模型,需要下载 onnxruntime

# 选其一即可
pip install onnxruntime        # CPU 版本
pip install onnxruntime-gpu    # GPU 版本

推理时需要借助其中的 InferenceSession,其中较为重要的实例方法有:

  • get_inputs():得到输入变量的列表 (变量属性:name、shape、type)
  • get_outputs():得到输入变量的列表 (变量属性:name、shape、type)
  • run(output_names, input_feed):输入变量为 numpy.ndarray (注意 dtype 应为 float32),使用模型推理并返回输出

可得出 onnx 模型的基本用法:

import onnxruntime as ort
import numpy as np

file = 'resnet.onnx'
# 找到 GPU / CPU
provider = ort.get_available_providers()[
    1 if ort.get_device() == 'GPU' else 0]
print('设备:', provider)
# 声明 onnx 模型
model = ort.InferenceSession(file, providers=[provider])

# 参考: ort.NodeArg
for node_list in model.get_inputs(), model.get_outputs():
    for node in node_list:
        attr = {'name': node.name,
                'shape': node.shape,
                'type': node.type}
        print(attr)
    print('-' * 60)

# 得到输入、输出结点的名称
input_node_name = model.get_inputs()[0].name
ouput_node_name = [node.name for node in model.get_outputs()]

image = np.random.random([1, 3, 224, 224]).astype(np.float32)
print(model.run(output_names=ouput_node_name,
                input_feed={input_node_name: image}))

高级 API

为了简化使用步骤,使用类进行封装:

import numpy as np
import onnxruntime as ort
import torch.onnx


class timer:

    def __init__(self, repeat: int = 1, avg: bool = True):
        self.repeat = max(1, int(repeat) if isinstance(repeat, float) else repeat)
        self.avg = avg

    def __call__(self, func):
        import time

        def handler(*args, **kwargs):
            t0 = time.time()
            for i in range(self.repeat): func(*args, **kwargs)
            cost = (time.time() - t0) * 1e3
            return cost / self.repeat if self.avg else cost

        return handler


def onnx_simplify(src, new=None):
    ''' onnx 模型简化'''
    import onnxsim, onnx
    model, check = onnxsim.simplify(onnx.load(src))
    assert check, 'Failure to Simplify'
    onnx.save(model, new if new else src)


class OnnxModel(ort.InferenceSession):
    ''' onnx 推理模型
        provider: 优先使用 GPU'''
    device = property(fget=lambda self: self.get_providers()[0][:-17])

    def __init__(self, src):
        for pvd in ort.get_available_providers():
            try:
                super().__init__(str(src), providers=[pvd])
                break
            except:
                pass
        assert self.get_providers(), 'No available Execution Providers were found'
        # 参考: ort.NodeArg
        self.io_node = list(map(list, (self.get_inputs(), self.get_outputs())))
        self.io_name = [[n.name for n in nodes] for nodes in self.io_node]
        self.io_shape = [[n.shape for n in nodes] for nodes in self.io_node]

    def __call__(self, *inputs):
        input_feed = {name: x for name, x in zip(self.io_name[0], inputs)}
        return self.run(self.io_name[-1], input_feed)

    @classmethod
    def from_torch(cls, model, args, dst, test=False, **export_kwd):
        args = (args,) if isinstance(args, torch.Tensor) else args
        torch.onnx.export(model, args, dst, opset_version=11, **export_kwd)
        onnx_model = cls(dst)
        if test:
            Timer = timer(repeat=3)
            # 测试 Torch 的运行时间
            torch_output = model(*args).data.numpy()
            print(f'Torch: {Timer(model)(*args):.2f} ms')
            # data: tensor -> array
            args = tuple(map(lambda x: x.data.numpy(), args))
            # 测试 onnx 的运行时间
            onnx_output = onnx_model(*args)
            print(f'Onnx: {Timer(onnx_model)(*args):.2f} ms')
            # 计算 Torch 模型与 onnx 模型输出的绝对误差
            abs_error = np.abs(torch_output - onnx_output).mean()
            print(f'Mean Error: {abs_error:.2f}')
        return onnx_model

在 Torch 中,对于卷积神经网络 model 与图像 image,推理的代码为 "model(image)",而使用这个封装的类也是类似:

import numpy as np

file = 'resnet.onnx'
model = OnnxModule(file)

image = np.random.random([1, 3, 224, 224]).astype(np.float32)
print(model(image))

from_torch 函数旨在导出 torch 模型的 onnx 文件,同时创建 onnx 推理模型

当其中的关键字参数 test = True 时,该函数会进行以下测试:

  • 得到 Torch 模型、onnx 模型的输出,并 print 推断耗时
  • 计算 Torch 模型与 onnx 模型输出的绝对误差的均值

对于 ResNet50 而言,Torch 模型的推断耗时为 172.67 ms,onnx 模型的推断耗时为 36.56 ms,onnx 模型的推断耗时仅为 Torch 模型的 21.17%

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荷碧TongZJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值