重拾Iris鸢尾花数据集分析

        最近我又又又开始了我的机器学习道路,并且回过头来重新看了一遍Iris数据分析,作为机器学习里面最经典的案例之一,鸢尾花既是我入门机器学习到放弃的地方,又是再次细读之后给予我灵感的地方。
        下面介绍一下这次灵感之旅,希望也能带给看到这篇文章的你一些帮助。

1. 从一堆鸢尾花说起

如果一个植物学家在野外看到一花萼长5cm宽2.9cm,花瓣长1cm宽0.2cm的鸢尾花,并且在他的认知里,这种鸢尾花有三个分支品种,这时候,他手里有来自UCI数据集网站的鸢尾花数据,那么他能否根据这对数据集预测这株鸢尾花的所属分支

2. 导入鸢尾花数据 

import sklearn
from sklearn.datasets import load_iris

iris_dataset :sklearn.utils.Bunch= load_iris() # 这里是将Python数据指定类型,转换成强语言,为了方便读取可用方法属性

print(type(iris_dataset))                       # 查看类型,返回的是一种类似于字典的数据类型
print("iris_Keys : " , iris_dataset.keys())    #对这种类似字典的数据操作,查看数据集的属性

输出:

<class 'sklearn.utils.Bunch'>
iris_Keys :  dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])

3. 核心数据

 

# 通过对values获取,得到鸢尾花特征值集合,其实也可以通过上面类字典的键获取,下面介绍
print("iris_values : \n")
iris_dataset.values()
# 这段代码可以获取鸢尾花特征名字,比如花瓣长度
iris_dataset['feature_names'] 

 

到这里我们获得一堆鸢尾花特征数据,我把它整理并放在了网上, 点击获取

4. 回望我们的目的 

一开始我就介绍,植物学家想通过数据集预测这是个什么种类的鸢尾花,这时候我们可以就获取这些相关种类了

# 获取种类
iris_dataset['target_names']

# 这里返回的是一个numpy.ndarray数组,并且以表格形式呈现

setosa
versic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

若您有别的建议,请在评论区留言

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值