目录
4. AI Challenger Human Keypoint Detection
5. Leeds Sports Pose (LSP) 及其扩展版 LSP Extended
9. 3DPW (3D Poses in the Wild)
一、人体姿态估计研究方向简介
人体姿态估计(Human Pose Estimation)是计算机视觉领域的核心任务之一,旨在从图像或视频中检测并定位人体的关键解剖部位(如关节、头部、四肢等),构建人体骨架模型。其核心目标包括:
-
2D姿态估计:在图像平面上预测人体关键点的二维坐标。
-
3D姿态估计:进一步恢复关键点的三维空间位置,或估计关节角度。
-
多人姿态估计:在复杂场景中同时检测多人的姿态,解决遮挡、密集人群等问题。
应用场景广泛,包括动作识别、人机交互、运动分析、虚拟现实、医疗康复等。近年来,随着深度学习技术的进步,姿态估计在精度和实时性上均取得显著突破。
二、人体姿态估计常用数据集介绍
1. COCO Keypoints
-
数据规模:超过20万张图像,25万标注人体实例,包含17个关键点(头、四肢、躯干)。
-
标注特点:提供2D关键点坐标、遮挡标签、人体检测框,覆盖室内外复杂场景。
-
应用场景:通用多人姿态估计基准,支持目标检测与姿态估计联合任务。
-
挑战:遮挡、小目标、复杂背景,多人密集场景下的歧义性。
2. MPII Human Pose
-
数据规模:约25,000张图像,40,000人体实例,16个关键点标注。
-
标注特点:包含丰富的日常活动(如运动、烹饪)和3D关节角度(部分数据)。
-
应用场景:适用于单人姿态估计,尤其关注复杂动作的多样性。
-
挑战:大范围肢体形变、非对称姿态、罕见动作。
3. Human3.6M
-
数据规模:360万帧视频,11名演员,17个关键点的3D坐标。
-
标注特点:多视角同步视频(4个摄像机)、3D运动捕捉数据、动作类别标签(如走路、打电话)。
-
应用场景:3D姿态估计与动作识别的黄金基准,常用于模型泛化能力测试。
-
挑战:从单目图像恢复3D姿态的深度歧义性,光照与服装变化。
4. AI Challenger Human Keypoint Detection
-
数据规模:31万张图像,38个关键点(包含手部细节)。
-
标注特点:中文场景数据,覆盖多种体型、年龄、光照条件。
-
应用场景:细粒度姿态估计,适用于手势识别等任务。
-
挑战:多样化的服饰(如长袖遮挡手部)、复杂背景。
5. Leeds Sports Pose (LSP) 及其扩展版 LSP Extended
-
数据规模:LSP含2,000张运动场景图像,LSP Extended增至11,000张。
-
标注特点:14个关键点,专注于体育动作(如田径、体操)。
-
应用场景:研究运动姿态的极端形变和遮挡问题。
-
挑战:高难度动作下的关键点可见性低,快速运动导致的模糊。
-
官网:LSPe - Leeds Sports Pose Extended — dbcollection 0.2.6 documentation
6. PoseTrack
-
数据规模:视频片段超过1,500段,30万帧,多人标注。
-
标注特点:2D关键点与跨帧人体ID跟踪标签。
-
应用场景:视频中的多人姿态估计与跟踪联合任务。
-
挑战:长时遮挡、跨帧姿态一致性、快速运动导致的ID切换。
7. CrowdPose
-
数据规模:20,000张图像,包含80,000个高度拥挤场景中的人体实例。
-
标注特点:14个关键点,强调密集人群中的遮挡与重叠。
-
应用场景:优化拥挤环境下的多人姿态估计算法。
-
挑战:极端拥挤导致的关键点误匹配、检测框重叠。
8. OCHuman
-
数据规模:5,000张图像,13个关键点,专注于严重遮挡场景。
-
标注特点:80%以上实例存在重度遮挡(如被物体或其他人遮挡)。
-
应用场景:测试模型在遮挡条件下的鲁棒性。
-
挑战:关键点可见性极低,依赖上下文推理。
9. 3DPW (3D Poses in the Wild)
-
数据规模:60段室外视频,3D姿态与形状参数(SMPL模型)。
-
标注特点:单目视频中的3D姿态、相机参数、背景动态变化。
-
应用场景:室外环境下的单目3D姿态估计与人体建模。
-
挑战:动态光照、复杂背景干扰、无标记3D重建。
10. SURREAL
-
数据规模:合成数据,600万张图像,3D关键点与人体形状。
-
标注特点:通过CG生成多样化人体动作、光照与纹理。
-
应用场景:3D姿态估计模型的预训练与域适应研究。
-
挑战:合成到真实场景的泛化能力。
数据集分类总结
类别 | 代表性数据集 | 核心特点 |
---|---|---|
通用2D姿态 | COCO, MPII, AI Challenger | 多样场景、多人检测 |
3D姿态 | Human3.6M, 3DPW, SURREAL | 多视角、运动捕捉、合成数据 |
视频姿态跟踪 | PoseTrack | 跨帧ID关联、时序一致性 |
遮挡与拥挤 | CrowdPose, OCHuman | 极端遮挡、密集人群 |
特定动作 | LSP, Human3.6M | 运动姿态、复杂动作 |
研究方向趋势
未来研究将更关注:
-
弱监督/自监督学习:减少对高成本3D标注的依赖。
-
多模态融合:结合IMU、深度传感器等多源数据。
-
实时性与轻量化:部署到移动端或边缘设备。
-
复杂场景泛化:解决遮挡、光照变化、动态背景等问题。
如果此文章对您有所帮助,那就请点个赞吧,收藏+关注 那就更棒啦,十分感谢!!!