文章目录
登录
并不是下载所有的都需要登录,有些需要授权,需要token
方式1
huggingface-cli login --token "YourToken" #引号里面YourToken替换为你自己的token
方式2
hf auth login
然后输入token
或者
hf auth login --token"YourToken"
下载huggingface_hub
首先:pip install huggingface_hub
若下载过查看版本:pip show huggingface_hub
此版本:0.5.3
加速下载
方式1:设置镜像
export HF_ENDPOINT=https://hf-mirror.com
说明:设置镜像是,为了更快下载。而且此种方式仅支持此次远程连接,若连接关闭后此种方式失效,建议将上面这一行写入 ~/.bashrc。
方式2:使用学术加速
但若是下载需要登录的模型,此种方法失效,可以使用下列方法:
使用学术加速:若是AUTODL服务器,其有学术加速功能,可通过在终端输入source /etc/network_turbo命令来临时为当前终端会话注入学术加速的网络代理配置,
下载项目文件/数据集
使用huggingface-cli download
huggingface-cli download --resume-download maxidl/Llama-OpenReviewer-8B README.md --local-dir /root/autodl-tmp/maxidl/Llama-OpenReviewer-8B --local-dir-use-symlinks False
若显示没有 --resume-download 说明已废弃了,但是已经合成到代码中,默认断点传送
数据集下载:
huggingface-cli download --repo-type dataset --resume-download WestlakeNLP/DeepReview-13K --local-dir /root/autodl-tmp/DeepReview-13K2 --local-dir-use-symlinks False
使用hf download
这种方式会将文件下载到/local_dir/huggingface/hub/【项目名】下面,且含有一堆额外的东西,包括软链接,不推荐❌
若想指定位置:
export HF_HOME=/root/autodl-tmp/huggingface
查看:
echo $HF_HOME
hf download Daoze/ReviewRebuttal --repo-type=dataset --local-dir /root/dataset
其他版本可试试:此版不支持这些参数
如:要下载 Hugging Face里面的Daoze/ReviewRebutta数据集的 refs/convert/parquet 版本到 /root/dataset 目录,可以使用 huggingface-cli 的 download 命令并指定版本(revision)和输出目录,具体命令如下:
hf download Daoze/ReviewRebuttal --repo-type=dataset --revision refs/convert/parquet --include "README.md" --local-dir /root/dataset --local-dir-use-symlinks False --resume-download
命令说明:
• --revision refs/convert/parquet:指定要下载的数据集版本(分支 / 标签)
• --local-dir /root/dataset:设置本地保存路径为 /root/dataset
• --local-dir-use-symlinks False:禁用符号链接,直接下载实际文件(避免生成链接文件)
–resume-download 参数:需要断点续传或增量下载
当使用 --resume-download 时,huggingface-cli 会同时具备两种特性:
• 对单个大文件支持断点续传(续传未完成的部分)。
• 对多文件数据集支持增量下载(只补充缺失或更新的文件)。
使用hf_hub_download
from huggingface_hub import hf_hub_download
# 仅下载模型的 指定文件,禁用软连接
hf_hub_download(
repo_id = "maxidl/Llama-OpenReviewer-8B",
repo_type="model",
filename="model-00003-of-00004.safetensors", # 目标文件名称(需准确,可在模型仓库页面查看)
local_dir="/root/autodl-tmp/Llama-OpenReviewer-8B", # 本地保存目录
local_dir_use_symlinks=False, # 禁用软连接
)
使用snapshot_download
from huggingface_hub import snapshot_download
#下载完整模型,禁用软连接
snapshot_download(
repo_id="bert-base-uncased", # 模型 ID(Hugging Face 仓库地址)
repo_type="model", # 资源类型:模型
local_dir="/root/autodl-tmp/Llama-OpenReviewer-8B", # 本地保存目录
local_dir_use_symlinks=False, # 关键:禁用软连接
# 可选:仅下载特定文件(如只要权重和配置,减少体积)
# allow_patterns=["*.bin", "config.json", "tokenizer.json"]
allow_patterns=["*.model", "*.json", "*.bin","*.safetensors",
"*.py", "*.md", "*.txt"],
ignore_patterns=[, "*.msgpack",
"*.h5", "*.ot",],
)
参考:
如何快速下载huggingface模型——全方法总结 知乎
huggingface-cli下载数据(含国内镜像源方法)CSDN
7910

被折叠的 条评论
为什么被折叠?



