两轮自平衡车系统的模型构建

本文介绍两轮自平衡车的工作原理,通过倒立摆模型解释其如何保持动态平衡,并给出系统力学模型、状态空间模型及传递函数阵模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 两轮自平衡车系统工作原理

   两轮自平衡车的平衡原理来自于倒立摆模型,由于两轮自平衡车的双轮平行布置在车体的左右两端,且载人时重心在双轮轴心正上方,所以它相当于一个倒立摆,是不稳定体,车体总是要向前或向后倾倒。当检测到车体向前倾斜时,内部电机加速旋转产生一个向前的加速度,这个加速度使得在双轮轴心上方的重心向后摆动,这就抵消了车体的向前倾斜,使车体的重心回到两轮中心轴的正上方,从而在竖直方向保持平衡。这一平衡是动态的,为保持车体竖直不倒,必须不断地驱动电机前进或后退,来克服重心偏移现象,保持车体平衡。

                                                               图1 平衡车系统平衡原理图

  1. 平衡车系统力学模型

忽略空气阻力后,可以将平衡车抽象成小车和均匀质杆组成的系统,如下图所示:

      

 

图2 自平衡车系统简图                      图3 小车及摆杆受力分析

其中,M——小车质量      m——摆杆质量     b——小车的摩擦系数

  l——摆杆的转动轴心到质心的长度      I——摆杆惯量

  F——小车受力(内部电机提供)     θ——摆杆与垂直向下方向的夹角

x——小车位移      φ——摆杆与垂直向上方向的夹角

1.分析小车在水平方向所受合力可得:

  2.分析摆杆在水平方向所受合力可得:

3.把(2)式代入(1)式可得系统的第一个运动方程:

4.对摆杆垂直方向受力分析可得:

5.把(4)式代入(3)式可得系统的第二个运动方程:

 3.平衡车系统状态空间模型

  1. 被控对象的输入力F用u表示,线性化后得到运动方程:

    2.整理后得到系统状态空间表达式:

 3.各物理量取以下数值,从而得到具体的状态空间模型

                                                                      表1  各物理量取值​​​​​​​

 状态变量:;输入变量:        ;            输出变量:​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​

 则状态方程和输出方程:

4.平衡车系统传递函数阵模型

由MATLAB将状态空间模型转换为传递函数模型,得到

(1)y与x1(x)之间的传递函数为:​​​​​​​​​​​​​​

(2)y与x3(φ)之间的传递函数为:  ​​​​​​​     

MATLAB程序附录:

clear;

clc;

syms I m M l b g x fai;

M=1.096;m=0.109;b=0.1;I=0.034;

l=0.25;g=9.8;

t=I*(M+m)+M*m*l^2;

A=[0,1,0,0;

   0,-(I+m*l^2)*b/t,m^2*g*l^2,0;

   0,0,0,1;

   0,-m*l*b/t,m*g*l*(M+m)/t,0;];

B=[0;(I+m*l^2)/t;0;m*l/t;];

C=[1,0,0,0;0,0,1,0;];

D=[0;0];

G_ss=ss(A,B,C,D);%状态空间模型

G_tf=tf(G_ss); %传递函数阵模型

一、平衡小原理: 自平衡是利用模自身动力使小保持相对的平衡,是一个动态平衡的过程。维持模平衡的动力来自轮的运动,由两个直流电机驱动。对模的控制可以分解为三个控制任务: 1、控制小平衡:通过控制小轮正反转使小保持直立平衡。 2、控制小速度:通过控制小的倾角实现小前后运动和速度的控制,其实最终的仍是通过控制电机的转速实现。 3、控制小方向:通过控制小两个电机之间的转速差来实现转向控制。 分解为三个控制任务显得相对简单一点,但是在最终的控制过程中都归结为对一个控制量的控制,这样三个任务之间就会存在耦合,会相互干扰。三个任务中控制平衡是关键,所以对小的速度和方向控制应该尽量的平滑。 二、硬件方案设计 小的硬件分为三个部分,分别是主控部分、小姿态获取部分以及电机驱动部分。主控板采用目前常用的arduino UNO,同时也可以使用其他arduino通用控制板做主控。 小姿态获取可以有很多方案,使用最多的就是通过加速度计和陀螺仪获取小姿态。理论上只需要两轴加速度计(垂直方向Z轴和沿小运动方向X轴)和一个单轴陀螺仪(沿小轮轴方向,获取绕小轮轴的角速度)。陀螺仪通过角度积分可以获得小角度,但是经过积分会产生累计误差,并且会越来越大,X轴Z轴加速度计的值也可以算出小的倾角,但是加速度计的瞬时误差较大,所以结合陀螺仪和加速度计两者获得的角度做数据融合可得真实角度。我们使用一个集成了三轴加速度计和三轴陀螺仪的集成芯片MPU6050,这样极大的简化了我们的传感器电路。 小通过两个直流电机驱动轮运动来获得动力,直流电机的驱动电路设计关系到整个系统的稳定性,因为电机反转时会产生反向电动势会干扰到电源系统内其他设备的运行。我们选用L298P做电机驱动器,它内部包含4通道逻辑驱动电路,可同时驱动两个直流电机,输出电流可达2.5A。 三、软件设计之小姿态获取---卡尔曼滤波 在开始之前应该对MPU6050进行设置,主要设置角速度以及加速度的量程,加速度量程有±2g、±4g±8g±16g,角速度量程分别为±250、±500、±1000±2000°/sec (dps),可准确的追踪快速动作慢速动作。在使用之前先设置好量程以便后面的换算。我们小轮轴传感器Y轴平行,即绕Y轴旋转则有: 那竖直方向弧度计算公式为: angle = atan2(x, z) //结果以弧度表示并介于 -pi 到 pi 之间(不包括 -pi) 如果要换算成具体角度: angle = atan2(x, z) *(180/3.14) 陀螺仪获取角速度积分得到角度公式为:anglen = anglen-1 + gyronn*dt ,式中anglen 为第N次采样的角度值,anglen-1 为第N-1次的角度值,gyronn为两次采样值之间的角速度值,dt为两次采样之间的时间。然后将换算后的两个角度数据进行卡尔曼滤波融合,可获得小真实角度,也可以采用更简单的互补滤波算法。 注意加速度计所得角度陀螺仪积分角度的方向。 四、软件设计之小姿态调整---PID参数整定 小的姿态获取最终结果是一个角度,就是小偏离平衡位置的倾角。通过以小的这个倾角为变量进行PID控制,输出用于控制轮转速的PWM值,那么相当于小只有一个角度反馈环路,虽然能使小平衡,但是增加了控制难度,所以通常会使用带测速的电机,再加入一个小速度反馈环路,这样使得小更容易控制。关于PID的有下面一个简单易懂的描述: 假设我们想把一个小球稳定在一个光滑的坡顶,这显然是一个不平衡的系统,稍有扰动小球就会滚下来。假设恰好平衡的位置坐标是L,我们可以测量到小球的位置是x,那么怎么给小球施加f(x)的力反馈,让它能够平衡呢? 最直观的想法就是f(x) =Kp*(L-x),简单的说就是你在左边我就向右推,你在右边我就向左推,这就是比例因子P; 现在考虑两种情况,同样是在x位置,小球静止和小球具有速度V这两种情况。很明显,如果V>0,我们只需要施加更小的力,因为小球自身的惯性会让它运动向平衡位置。所以可以修正f(x) = Kp*(L-x) – Kd*V。因为速度一般不容易测量,我们常常用位置的变化Δx除以测量的时间差Δt来计算速度,所以这就是微分因子D; 情况继续发生变化,上面考虑的是斜坡静止的情况,如果这个变态的斜坡是移动的怎么办呢?(例如两轮平衡机器人实际上是可以运动的,对于静止的磁悬浮来说,不需要考虑这个参数)这时候我们需要不断的累加并平均x值,来计算平衡位置的L,这个就是积分因子I; 当PID用在我们自平衡中时,我们使用角度PD环速度PI环进行控制。 pwm=angle*k1+angle_dot*k2+range*k3+wheel_speed*k4; PID参数整定步奏如下: 1、将k1,k2,k3,k4均设为0; 2、逐步增大k1,使得小刚好能够来回摆动。 3、再逐步增大k2,使得小相对平稳,太大会使小发生抖动; 4、增大k3,使得小能够来回走动(不是摆动也不是抖动); 5、增大k4,使得小能稳定自平衡。 具体参数调整过程比较繁琐,需要自己体会每个参数的作用。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值