目录
Python工具库:
这里常用的Numpy、Pandas、Matplotlib、Scikit-Learn、tensorflow(谷歌开源的一个深度学习框架)
机器学习:
通俗一点的说就是,你告诉机器你想干什么,并且给它一堆数据让它模仿着做!
机器学习需要啥?
算法、数据、程序、评估、应用
机器学习能做啥?
数据挖掘(从一大堆数据中挖掘一些潜在的最具有价值的信息)、统计学习、模式识别、计算机视觉、自然语言处理(这两个近年来发展很快)、语音识别。
机器学习流程:
<1)训练样本-->2)特征抽取-->3)学习函数(将"不同的"数据分开)-->4)预测>
1. 数据收集与预处理
2. 特征选择(将人认识的符号转换成计算机认识的符号)与模型构建(重中之重)
3. 评估与预测
怎么学机器学习?
1. 其本质是 数学原理推导 和 实际应用的技巧(明白原理推导很重要,要弄懂!!!不会就问呗)
2. 机器学习的经典算法,既要学习,也要明白每个算法怎么来的以及该怎么用
3. 对于不会的数学,(目前概率论正在学),所以遇到不会的,边学变查!
深度学习又是啥?
深度学习是机器学习中神经网络算法的延伸,只不过应用比较广
深度学习在计算机视觉和自然语言处理中更厉害一些
学深度学习的基础是机器学习,所以要先打好基础!机器学习绝对值得从头开始!!!
算法推导咋开始?
首先选自己喜欢的方式(本人不喜欢直接取啃书,我喜欢看别人的博客(有的写的真的特别好)有视频更好了,听着别人讲更容易理解)
如果一个地方死活看不懂咋办?找到比你厉害能教你的圈子,跟她们交流,问她们怎么理解。也可以先整体了解之后再回过头去看,说不定就茅塞顿开了!
养成记笔记的好习惯(写博客比较容易坚持下来!按自己的理解从头到尾写出来,才说明真会了)
机器学习怎么去实践起来?
去哪找案例?最好的资源:Github(找资源)、kaggle(找数据,可以跟大家讨论的地方)
案例积累,模仿别人的案例,先模仿别人的做+自己的一些想法改一改就欧了
安装 Anaconda
它集成了python环境,及深度学习所需要的所有包,所以很方便。当然其他的Python开发软件也可以,安装教程一搜就有,傻瓜式安装。不要再官网下载(很慢),用下面这个镜像网站下载Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
安装好后,就自带一些Python中很重要的库(很推荐使用)
由于我之前已经装过jupyter notebook了,所以直接用那个就好啦。notebook的好处就是,他既可以写笔记也可以运行代码块,很方便。
好了,有了工具,接下来就是坚持跟着视频学了!加油吧!
下期预告 Numpy