一、图像像素统计
1.1寻找图像像素最大值与最小值
OpenCV中提供了寻找像素最大值、最小值的函数minMaxLoc(),该函数的代码原型如下:
void cv::minMaxLoc(InputArray src,
double *minVal,
double *maxVal = 0,
Point *minLoc = 0,
Point *maxLoc = 0,
InputArray mask = noArray()
)
src:需要寻找最大值和最小值的图像或矩阵,要求必须是单通道矩阵。
minVal:图像或者矩阵的最小值。
maxVal:图像或者矩阵的最大值。
minLoc:图像或者矩阵中的最小值在矩阵中的坐标。
maxLoc:图像或者矩阵中的最大值在矩阵中的坐标。
mask:掩膜,用于设置在图像或矩阵中的指定区域寻找最值。
新的数据类型Point。该数据类型是用于表示图像的像素坐标,由于图像的像素坐标轴以左上角为坐标原点,水平方向为x轴,垂直方向为y轴。在OpenCV中对于二维坐标和三维坐标都设置了多种数据类型,针对二维坐标数据类型,定义了整数cv::Point2i(或者cv::Point)、double型坐标cv::Point2d,浮点型坐标cv::Point2f,对于三维坐标,同样定义了上述的数据类型,只需将其中的数字“2”变成“3”。
该函数实现的功能是寻找图像中特定区域内的最值,函数第一个参数是输入单通道矩阵。需要注意,该变量必须是一个单通道的矩阵数据,如果是多通道的矩阵数据,需要用cv::Mat::rehsape()将单通道变成多通道。
CV::Mat::reshape()函数原型:
Mat cv::Mat::reshape(int cn,
int rows = 0
)
cn:转换后矩阵的通道数。
rows:转换后矩阵的行数。如果参数为0,则转换后行数与转换前相同。
代码实例:
#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>
using namespace std;
using namespace cv;
int main()
{
system("color F0"); //更改输出界面颜色
float a[12] = { 1, 2, 3, 4, 5, 10, 6, 7, 8, 9, 10, 0 };
Mat img = Mat(3, 4, CV_32FC1, a); //单通道矩阵
Mat imgs = Mat(2, 3, CV_32FC2, a); //多通道矩阵
double minVal, maxVal; //用于存放矩阵中的最大值和最小值
Point minIdx, maxIdx; //用于存放矩阵中的最大值和最小值在矩阵中的位置
/*寻找单通道矩阵中的最值*/
minMaxLoc(img, &minVal, &maxVal, &minIdx, &maxIdx);
cout << "img中最大值是:" << maxVal << " " << "在矩阵中的位置:" << maxIdx << endl;
cout << "img中最小值是:" << minVal << " " << "在矩阵中的位置:" << minIdx << endl;
/*寻找多通道矩阵中的最值*/
Mat imgs_re = imgs.reshape(1, 4);
minMaxLoc(imgs_re, &minVal, &maxVal, &minIdx, &maxIdx);
cout << "imgs中最大值是:" << maxVal << " " << "在矩阵中的位置:" << maxIdx << endl;
cout << "imgs中最小值是:" << minVal << " " << "在矩阵中的位置:" << minIdx << endl;
return 0;
}
1.2计算图像的平均值和标准差
图像的平均值表示图像整体的亮度程度,图像的平均值越大,则图像整体越亮。标准差表示图像中明暗变化的对比程度,标准差越大,表示图像中明暗变化越明显。OpenCV中提供了mean()函数用于计算图像的平均值,提供了meanStdDev()函数用于同时计算图像的平均值和标准差。
mean()函数原型:
cv::Scalar cv::mean(InputArray src,
InputArray mask = noArray()
)
src:待求平均值的图像矩阵。
mask:掩膜,用于标记求取哪些区域的平局值。
数学原理:(本人不会使用公式编译器,拿着图片凑合一下吧)
meanStdDev()函数可以同时求取图像每个通道的平均值和标准差,其函数原原型如下:
void cv::meanStdDev(InputArray src,
OutputArray mean,
OutoutArray stddev,
InputArray mask = noArray()
)
src:待求平均值的图像矩阵。
mean:图像每个通道的平均值,参数为Mat类型变量。
stddev:图像每个通道的标准差,参数为Mat类型变量。
mask:掩膜,用于标记求取那些区域的平均值和标准差。
该函数的计算原理如下:
代码实例:
#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>
using namespace std;
using namespace cv;
int main()
{
system("color F0"); //更改输出界面颜色
float a[12] = { 1, 2, 3, 4, 5, 10, 6, 7, 8, 9, 10, 0 };
Mat img = Mat(3, 4, CV_32FC1, a); //单通道矩阵
Mat imgs = Mat(2, 3, CV_32FC2, a); //多通道矩阵
cout << "/* 用mean求取图像的平均值 */" << endl;
Scalar myMean;
myMean = mean(imgs);
cout << "imgs平均值=" << myMean << endl;
cout << "imgs第一个通道的平均值=" << myMean[0] << " "
<< "imgs第二个通道的平均值=" << myMean[1] << endl << endl;
cout << "/* 用meanSTDDev同时求取图像的平均值和标准差 */" << endl;
Mat myMeanMat, myStddevMat;
meanStdDev(img, myMeanMat, myStddevMat);
cout << "img平均值=" << myMeanMat << endl;
cout << "img标准差=" << myStddevMat << endl << endl;
meanStdDev(imgs, myMeanMat, myStddevMat);
cout << "imgs平均值=" << myMeanMat << endl;
cout << "imgs标准差=" << myStddevMat << endl << endl;
return 0;
}
二、两图像间的像素操作
2.1两幅图像的比较运算
在OpenCV中提供了求取两幅图像每一个像素较大或者较小灰度值的max()、min()函数,这两个函数分别比较两幅图像中没每一个元素灰度值的大小,保留较大(较小)的灰度值。函数原型如下:
void cv::max(InputArray src1,
InputArray src2,
OutputArray dst
)
void cv::min(InputArray src1,
InputArray src2,
OutputArray dst
)
src1:第一个图像矩阵,可以是任意通道数的矩阵。
src2:第二个图像矩阵,尺寸和通道数以及数据类型都需要与src1一致。
dst:保留对应位置较大(较小)灰度值后的图像矩阵,尺寸、通道数和数据类型与src1一致。
实例代码:
#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>
using namespace std;
using namespace cv;
int main()
{
float a[12] = { 1, 2, 3.3, 4, 5, 9, 5, 7, 8.2, 9, 10, 2 };
float b[12] = { 1, 2.2, 3, 1, 3, 10, 6, 7, 8, 9.3, 10, 1 };
Mat imga = Mat(3, 4, CV_32FC1, a);
Mat imgb = Mat(3, 4, CV_32FC1, b);
Mat imgas = Mat(2, 3, CV_32FC1, a);
Mat imgbs = Mat(2, 3, CV_32FC1, b);
//对两个单通道矩阵进行比较
Mat myMax, myMin;
max(imga, imgb, myMax);
min(imgb, imgb, myMin);
//对两个多通道矩阵进行比较
Mat myMaxs, myMins;
max(imgas, imgas, myMaxs);
max(imgas, imgbs, myMaxs);
//对两幅彩色图像进行比较运算
Mat img0 = imread("img1.png");
Mat img1 = imread("img2.png");
if (img0.empty() || img1.empty())
{
cout << "请确认图像文件名称是否正确" << endl;
return -1;
}
/*img0.resize(200, 300);
img1.resize(200, 300);*/
Mat comMin, comMax;
max(img0, img1, comMax);
min(img0, img1, comMin);
imshow("comMin", comMin);
imshow("comMax", comMax);
//对两幅灰度图像进行比较运算
Mat img0G, img1G, comMinG, comMaxG;
cvtColor(img0, img0G, COLOR_BGR2GRAY);
cvtColor(img1, img1G, COLOR_BGR2GRAY);
max(img0G, img1G, comMaxG);
min(img0G, img1G, comMaxG);
imshow("comMinG", comMinG);
imshow("comMaxG", comMaxG);
waitKey(0);
return 0;
}
2.2两幅图像的逻辑运算
OpenCV中针对两个图像之间的“与”“或”异或”以及“非”运算分别提供了bitwise_and(), bitwise_or(), bitwise_xor(), bitwise_not()函数。
图像数据类型 | 像素值1 | 像素值2 | 与 | 或 | 异或 | 非(像素1) |
二值 | 0 | 0 | 0 | 0 | 0 | 1 |
二值 | 1 | 0 | 0 | 1 | 1 | 0 |
二值 | 0 | 1 | 0 | 1 | 1 | 1 |
二值 | 1 | 1 | 1 | 1 | 0 | 0 |
8位 | 0 | 0 | 0 | 0 | 0 | 255 |
8位 | 5 | 6 | 4 | 7 | 3 | 250 |
图像逻辑运算的规则。图像间的逻辑运算与数字间的运算相同。像素的“非”运算只能针对一个数值进行,因此在上图中对像素求非运算时对图像1的像素值进行“非”运算。若果像素取值只有0和1,那么上图的前四行数据正好对应了所有的运算规则,但是CV_8U类型的图像像素值是从0到255,此时逻辑运算就需要将像素值转成二进制后再进行,以为CV_8U类型是8位数据,对0求非是11111111,也就是255。
函数原型:
//与
void cv::bitwise_and(InputArray src1,
InputArray src2,
OutputArray dst,
InputArray mask = noArray()
)
//或
void cv::bitwise_or(InputArray src1,
InputArray src2,
OutputArray dst,
InputArray mask = noArray()
)
//异或
void cv::bitwise_xor(InputArray src1,
InputArray src2,
OutputArray dst,
InputArray mask = noArray()
)
//非
void cv::bitwise_xor(InputArray src1,
InputArray src2,
OutputArray dst,
InputArray mask = noArray()
)
src1:第一个图像矩阵,可以是多通道矩阵图像数据。
src2:第二个图像矩阵,尺寸、通道数和数据类型都需要与src1一致。
dst:逻辑运算输出结果,尺寸、通道数和数据类型都与src1一致。
mask:掩膜,用于设置图像过矩阵中逻辑运算的范围。
代码实例:
#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>
using namespace std;
using namespace cv;
int main()
{
Mat img = imread("img.png");
if (img.empty())
{
cout << "请确认图像文件名称是否正确" << endl;
return -1;
}
//创建两个黑白图像
Mat img0 = Mat::zeros(200, 200, CV_8UC1);
Mat img1 = Mat::zeros(200, 200, CV_8UC1);
Rect rect0(50, 50, 100, 100);
img0(rect0) = Scalar(255);
Rect rect1(100, 100, 100, 100);
img1(rect1) = Scalar(255);
imshow("img0", img0);
imshow("img1", img1);
//进行逻辑运算
Mat myAnd, myOr, myXor, myNot, imgNot;
bitwise_not(img0, myNot);
bitwise_and(img0, img1, myAnd);
bitwise_or(img0, img1, myOr);
bitwise_xor(img0, img1, myXor);
bitwise_not(img, imgNot);
imshow("myAnd", myAnd);
imshow("myOr", myOr);
imshow("myXor", myXor);
imshow("myNot", myNot);
imshow("imgNot", imgNot);
waitKey(0);
return 0;
}