系列文章目录
往期文章回顾:
【LLM】三、open-webui+ollama搭建自己的聊天机器人
【LLM】二、python调用本地的ollama部署的大模型
文章目录
目录
前言
往期文章中,已经讲解了如何用ollama部署本地模型,并通过open-webui来部署自己的聊天机器人,同时也简单介绍了RAG的工作流程,本篇文章将会基于之前的内容来搭建自己的RAG服务,正文开始。
一、RAG是什么
RAG的相关简介可以去“系列文章四” 中查看,这里不在赘述
二、搭建自己的RAG服务
1.准备自己的知识库文件
常见的文档格式一般为txt、doc、PDF等,这里我将选择最简单的txt文档进行导入,需要注意以下几点:
- 由于目前LLM均有token的限制,所以在写入向量库时会对我们上传的文档进行分割、切块,将较长的文本切分成较小的文本,每段文本即为一个单位的知识。
- 当PDF、doc中设计到表格、图片时,需要特殊处理,现有框架如open-webui或者lang chain等在加载该类文档时,仅仅会处理文字部分,图片和表格部分均会忽略,如果图片内容对你来说也非常重要的话,需要自己转换下,如OCR识别或者WPS转换(效果针对与具体文档而言,这里不给评价)
这里,我以一个最简单的txt来作为参考,为了方便演示,内容相对简单且简洁,具体如下:
</