
ML和DL实战练习
文章平均质量分 85
使用pycharm和Anaconda运行代码,运行官网给出的数据集,从模型到训练再到测试,并给其中一些代码做出注释,模型的理论放在对应深度学习理论分栏
Studying 开龙wu
无聊摸索工作中问题,与python、深度学习、机器学习、数据分析、生成式AI、AI Agent相关的学习笔记等
展开
-
深度学习模型部署:使用Flask将图像分类(5类)模型部署在服务器上,然后在本地GUI调用。(全网模型部署项目步骤详解:从模型训练到部署再到调用)
实现提供了一个完整的端到端解决方案,从服务器端模型部署到本地GUI调用。你可以根据需要进一步自定义界面和功能。原创 2025-05-22 17:44:46 · 859 阅读 · 0 评论 -
度学习pytorch实战六:ResNet50网络图像分类篇自建花数据集图像分类(5类)超详细代码
1.数据集简介、训练集与测试集划分2.模型相关知识3.model.py——定义ResNet50网络模型4.train.py——加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数5.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试原创 2023-06-12 20:29:04 · 17606 阅读 · 26 评论 -
深度学习pytorch实战五:基于ResNet34迁移学习的方法图像分类篇自建花数据集图像分类(5类)超详细代码
1.数据集简介2.模型相关知识3.split_data.py——训练集与测试集划分4.model.py——定义ResNet34网络模型5.train.py——加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数6.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试原创 2023-06-12 17:20:07 · 6820 阅读 · 6 评论 -
深度学习pytorch实战四:GoogLeNet图像分类篇自建花数据集图像分类(4类)超详细代码
GoogLeNet图像分类篇自建花数据集图像分类(4类)超详细代码1.自建数据集与划分训练集与测试集2.模型相关知识3.model.py——定义GoogLeNet网络模型4.train.py——加载数据集并训练,计算损失值loss,测试集计算accuracy,保存训练好的网络参数5.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测原创 2023-03-28 09:35:11 · 2904 阅读 · 7 评论 -
深度学习pytorch实战三:VGG16图像分类篇自建数据集图像分类三类
VGG16图像分类篇自建数据集图像分类三类1.自建数据集与划分训练集与测试集2.模型相关知识3.model.py——定义AlexNet网络模型4.train.py——加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数5.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试原创 2023-03-06 22:59:51 · 6193 阅读 · 7 评论 -
深度学习pytorch实战二:AlexNet图像分类篇且官网提供花数据集分五类
AlexNet图像分类篇且官网提供花数据集分五类, 5 种类型(雏菊,蒲公英,玫瑰,向日葵,郁金香)的花,先定义AlexNet网络模型,加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数,利用训练好的网络参数后,用自己找的图像进行分类测试原创 2022-11-08 17:02:09 · 3144 阅读 · 0 评论 -
深度学习pytorch实战一:LeNet图像分类篇且pytorch官方提供The CIFAR-10数据集分十类
深度学习pytorch实战一:LeNet图像分类篇且pytorch官方提供The CIFAR-10数据集分十类.**1.model.py——定义LeNet网络模型2.train.py——加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数3.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试**。运行结果也有。原创 2022-10-30 19:19:43 · 1796 阅读 · 1 评论