
数据分析和可视化
Pandas、NumPy库、polt、Sklearn、matplotlib库等这些科学计算库之上,提供了简单有效的数据挖掘和数据分析工具
Studying 开龙wu
无聊摸索工作中问题,与python、深度学习、机器学习、数据分析、生成式AI、AI Agent相关的学习笔记等
展开
-
从CSV表中读取数据,并查找指定列是否有空值
获取数据缺失信息原创 2025-03-25 10:29:22 · 190 阅读 · 0 评论 -
Matplotlib库中color 参数颜色有多少种
Matplotlib 支持的颜色名称非常丰富,涵盖了 HTML/CSS 中的大部分颜色。你可以根据需要选择合适的颜色名称来美化你的图表。原创 2025-03-08 14:53:04 · 421 阅读 · 0 评论 -
数据分析绘制随时间顺序变化图加入线性趋势线——numpy库的polyfit计算一次多项式拟合
时间索引转换:np.arange(len(filtered_data.index)) 将时间索引转换为从 0 开始的整数序列,因为 polyfit 需要数值型的输入。线性拟合:np.polyfit(time_index, filtered_data['wind_obs'], deg=1) 计算线性趋势线的系数。deg=1 表示一次多项式(线性拟合)。趋势线绘制:使用 np.poly1d 创建多项式对象,并通过 polynomial(time_index) 计算趋势线的值,然后将其绘制在图上。原创 2025-03-08 14:44:49 · 520 阅读 · 0 评论 -
从一个或多个CSV表里读取筛选时间范围指定变量变化趋势
确保CSV文件中的时间列名称与代码中的data_time一致,如果不一致,请修改为实际的列名原创 2025-03-08 14:31:57 · 200 阅读 · 0 评论 -
从csv文件读取或者创建字典类型dict读取时间每列年月日时分秒信息合并成一列里显示2025-01-04 10:45:15
处理Pandas DataFrame中的日期和时间数据,并且想要将这些数据转换为datetime对象,你通常会使用pd.to_datetime函数,而不是直接使用datetime.datetime,因为pd.to_datetime能够更方便地处理DataFrame中的列,并且提供了更多的选项来处理各种日期和时间格式。然而,了解datetime模块本身仍然是有用的,因为它提供了许多底层的功能和类,这些功能和类在需要更细粒度的控制时可能会很有用。原创 2025-01-04 15:50:11 · 304 阅读 · 0 评论 -
Pandas库模块解析
Pandas是一个功能强大、易于使用的Python数据分析库,它提供了高效的数据结构和丰富的函数和方法用于数据分析和处理。无论是数据科学家还是数据分析师,都可以利用Pandas来快速、准确地完成数据分析和处理任务。原创 2024-10-22 19:33:42 · 1170 阅读 · 0 评论