机器学习理论
文章平均质量分 91
从入门开始学习机器学习
Studying 开龙wu
欢迎一起交流学习,喜欢没事的时候写写python、Opencv、图像处理、深度学习、机器学习、数据分析相关的学习笔记,目前是一名已经毕业的研究生。
展开
-
大数据、人工智能、机器学习、深度学习关系联系前言
1.大数据和人工智能关系2.机器学习、深度学习、人工智能关系3.监督学习、无监督学习、半监督学习、强化学习、迁移学习关系4.机器学习具体内容原创 2023-08-21 19:03:38 · 1247 阅读 · 0 评论 -
机器学习前言
1.机器学习和统计学关系2.机器学习的发展3.机器学习与深度学习的相同点与不同点4.机器学习和深度学习优缺点原创 2023-07-26 21:54:31 · 1137 阅读 · 0 评论 -
支持向量机SVM的原理、算法、应用超详述
建立在统计学习理论VC维理论和结构风险最小化原理基础上的机器学习方法。用于解决数据挖掘或模式 识别领域中数据分类问题它在解决小样本、非线性和高维模式识别问题中表现出许多特有的优势,并在很大程度上克服了“维数灾难”和“过学习”等问题。此外,它具有坚实的理论基础,简单明了的数学模型,因此,在模式识别、回归分析、函数估计、时间序列预测等领域都得到了长足的发展,并被广泛应用于文本识别、手写字体识别、人脸图像识别、基因分类及时间序列预测原创 2022-10-02 16:38:17 · 2335 阅读 · 0 评论 -
BP神经网络理论
BP (Back Propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照**误差逆向传播算法**训练的多层前馈神经网络,是应用最广泛的神经网络。BP神经网络由输入层、输出层和之间若干层(一层或多层)隐含层构成,每一层可以有若干个节点。层与层之间节点的连接状态通过权重来体现。只有一个隐含层的时候,这样的BP神经网络属于传统的浅层神经网络**;当有多个隐含层的时候,这样的BP神经网络属于**深度学习的神经网络。原创 2022-09-29 19:24:21 · 1383 阅读 · 0 评论 -
数据挖掘之K近邻算法分类和KD树改进及代码超详细
KNN(K-Nearest Neighbor即K近邻),监督学习算法。当预测一个新的值x的时候,根据它距离最近的K个点是什么类别来判断属于哪个类别。做分类也可以做回归。原创 2022-06-19 16:29:02 · 1255 阅读 · 0 评论