
深度学习理论(图像分类、目标检测)
文章平均质量分 92
掌握深度学习后学习深度学习
Studying 开龙wu
无聊摸索工作中问题,与python、深度学习、机器学习、数据分析、生成式AI、AI Agent相关的学习笔记等
展开
-
深度学习模型部署:使用Flask将图像分类(5类)模型部署在服务器上,然后在本地GUI调用。(全网模型部署项目步骤详解:从模型训练到部署再到调用)
实现提供了一个完整的端到端解决方案,从服务器端模型部署到本地GUI调用。你可以根据需要进一步自定义界面和功能。原创 2025-05-22 17:44:46 · 859 阅读 · 0 评论 -
机器学习前言2
机器学习正快速渗透到各行各业,但其成功依赖高质量数据、合理算法选择和领域知识结合。机器学习模型是机器学习中的核心组件,它是从数据中学习到的数学表示,用于对新数据进行预测或决策。模型可以看作是一个函数 它将输入数X 映射到输出 Y。机器学习模型是从数据中学习的数学函数,用于预测或决策。主要类型:监督学习、无监督学习、强化学习、深度学习。关键选择因素:任务类型、数据规模、可解释性、计算资源。评估方法:准确率、MSE、轮廓系数等。原创 2025-05-16 15:59:19 · 1019 阅读 · 0 评论 -
深度学习卷积神经网络CNN之MobileNet模型网络模型详解说明(超详细理论篇)
MobileNet模型作为深度学习领域中的一个重要里程碑,以其轻量、高效的特性在多个实际应用中得到了广泛应用。通过不断优化和创新,MobileNet系列将继续为移动设备和嵌入式系统提供高效的深度学习解决方案。原创 2024-12-22 16:44:19 · 2098 阅读 · 2 评论 -
深度学习之目标检测Faster RCNN模型算法流程详解说明(超详细理论篇)
1.Faster RCNN论文背景2. Faster-RCNN算法流程(1)Fast-RCNN算法流程(2)特征提取conv layers(3)Region Proposal Networks(RPN)(4)ROI Pooling作用(5)Classification3.Faster RCNN问题和优缺点原创 2023-07-07 17:40:23 · 7103 阅读 · 0 评论 -
深度学习之目标检测Fast-RCNN模型算法流程详解说明(超详细理论篇)
1.Fast-RCNN论文背景2. Fast-RCNN算法流程RCNN算法流程4个步骤、Fast-RCNN算法流程、Fast RCNN相比于RCNN改进、ROI Pooling(Region of Interest)、SPP Net、多任务损失函数3.Fast R-CNN 问题和缺点原创 2023-06-25 22:01:23 · 14397 阅读 · 1 评论 -
深度学习之目标检测R-CNN模型算法流程详解说明(超详细理论篇)
RCNN算法分为4个步骤:获取候选区域:对于一张输入的图像,首先使用selective search算法获取2000个左右的候选区域。获取图像特征:将图像输入到卷积神经网络中获取图像特征,这一部分可以采用常用的图像卷积神经网络如VGGNet,AlexNet等。获取区域类别:在初步获得目标的位置之后,需要获取目标的类别,这一步采用SVM分类器来判断当前区域属于哪个类别。微调区域位置:尽管候选区域已经初步目标的位置,但是这个区域比较粗糙,因此使用回归器对区域位置进行微调原创 2023-06-24 22:23:42 · 22009 阅读 · 1 评论 -
目标检测简介
1.计算机视觉与目标检测联系2.传统目标检测3.深度学习目标检测4.深度学习目标检测实现步骤原创 2023-06-12 21:57:23 · 3583 阅读 · 1 评论 -
深度学习卷积神经网络CNN之ResNet模型网络详解说明(超详细理论篇)
ResNet背景、ResNet论文、ResNet模型结构、ResNeResNet 在2015 年由微软研究院提出的一种深度卷积神经网络结构,主要的创新是在网络中引入了残差模块(residual block),其中输入和输出之间添加了一个跳跃连接(skip connection),将输入直接加到输出上。这种跳跃连接的设计使得网络可以更轻松地学习残差,从而解决了梯度消失和模型退化的问题。ResNet-18、ResNet-34、ResNet-50、ResNet-101和ResNet-152等原创 2023-06-11 17:48:53 · 17785 阅读 · 0 评论 -
卷积神经网络CNN进步史之分类领域小论文文章总结帮助初学者找文献
卷积神经网络分类领域的重要参考文献,CNN从不同角度和方面的分类方法和发展趋势原创 2023-03-28 11:43:28 · 1102 阅读 · 0 评论 -
深度学习卷积神经网络CNN之GoogLeNet模型网络模型详解说明(超详细理论篇)
1.GoogLeNet背景2. GoogLeNet改进史3. GoogLeNet模型结构4. 特点(超详细创新、优缺点及新知识点)提出Inception结构;1 * 1的卷积核降维;两个辅助分类器帮助训练;丢弃全连接层,使用平均池化层原创 2023-03-27 22:44:26 · 4653 阅读 · 2 评论 -
深度学习卷积神经网络CNN之 VGGNet模型主vgg16和vgg19网络模型详解说明(理论篇)
VGGNet模型是大规模视觉识别挑战赛竞赛的第二名,六组实验,对应6个不同的网络模型,这六个网络深度逐渐递增的同时,也有各自的特点。实验表明最后两组,即深度最深的两组16和19层的VGGNet网络模型在分类和定位任务上的效果最好。从VGG背景、VGGNet模型结构、特点(创新、优缺点及新知识点)、各组的区别原创 2023-03-06 16:31:28 · 19638 阅读 · 2 评论 -
卷积神经网络CNN之ZF Net网络模型详解(理论篇)
卷积神经网络CNN之ZF Net网络模型详解(理论篇)1.背景2. ZF Net模型结构3. 改进优缺点名字命名的,Matthew D.Zeiler 和 Rob Fergus 论文名:Visualizing and Understanding Convolutional N,多通道卷积核卷积计算原创 2023-03-05 11:22:09 · 844 阅读 · 0 评论 -
卷积神经网络CNN里经典网络模型之 AlexNet全网最详解(理论篇)
CNN里AlexNet网络的最后一层输出喂给了一个包含1000个单元的softmax层,用来对1000个标签进行预测。响应归一化层(Response-normalization layers)跟在第1和第2卷积层后面,Max-pooling层跟在Response-normalization层和第5卷积层后面,ReLU激活函数应用与所有卷积层和全连接层输出后。AlexNet的特点:使用ReLu作为激活函数、.数据增广(Data Augmentation增强)抑制过拟合、使用Dropout抑制过拟合原创 2022-11-03 16:25:57 · 7038 阅读 · 1 评论 -
CNN经典网络模型详解LeNet(LeNet-1, LeNet-4, LeNet-5最详细, Boosted LeNet-4)发展和过程
CNN经典网络模型详解LeNet(LeNet-1, LeNet-4, LeNet-5最详细, Boosted LeNet-4)发展和过程。原创 2022-10-30 16:18:59 · 3743 阅读 · 1 评论 -
深度学习之卷积神经网络CNN详细
计算机视觉、自然语言处理等领域(图像分类、图像分割、图像检测、文本原创 2022-06-19 15:57:13 · 2481 阅读 · 0 评论