第六章一些算法的实现

目录

邻域平均法平滑彩色图像

结果:

代码:


邻域平均法平滑彩色图像

用5*5的核平滑lena图片。

第一种方式:对RGB分量操作

第二种方式:对HSV空间的V分量即亮度分量操作

第二种方式由于只平滑了亮度分量,而每个像素的色调和饱和度不受影响,因此像素的颜色没有变化,两种方法的差别会随着核的增大变得明显。

结果:

HSV分量:

平滑结果(5*5的核):

平滑结果(9*9的核):

平滑结果(11*11的核):

 平滑结果(25*25的核):

 

代码:

import cv2  # cv2是BGR而不是RGB
import numpy as np  # 这个库用于随机生成和矩阵运算
import matplotlib.pyplot as plt

def tran(img, k_size):
    h, w, c = img.shape
    copy = cv2.copyMakeBorder(img, *[k_size // 2] * 4, borderType=cv2.BORDER_DEFAULT)  # 补零
    out = img.copy()
    for k in range(c):
        for i in range(h):
            for j in range(w):
                out[i,j,k] = np.sum(copy[i:i+k_size,j:j+k_size,k]) / (k_size ** 2)
    return out.astype(np.uint8)

def tran_V(img, k_size):
    h, w = img.shape
    copy = cv2.copyMakeBorder(img, *[k_size // 2] * 4, borderType=cv2.BORDER_DEFAULT)  # 补零
    out = img.copy()
    for i in range(h):
        for j in range(w):
            out[i,j] = np.sum(copy[i:i+k_size,j:j+k_size]) / (k_size ** 2)
    return out.astype(np.uint8)


if __name__ == '__main__':
    plt.rcParams['font.sans-serif'] = ['FangSong'] # 使标题能用中文字体
    plt.rcParams['axes.unicode_minus'] = False

    img = cv2.imread(r'D:\pictures\Fig0638(a)(lenna_RGB).tif')
    HSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #转换到HSV空间
    H,S,V = HSV[:,:,0], HSV[:,:,1], HSV[:,:,2]

    """画图:HSV分量"""
    plt.figure(1)
    plt.subplot(1,3,1)
    plt.imshow(H,cmap='gray')
    plt.xticks([])
    plt.yticks([])
    plt.title('H')
    plt.subplot(1,3,2)

    plt.imshow(S,cmap='gray')
    plt.xticks([])
    plt.yticks([])
    plt.title('S')
    plt.subplot(1,3,3)

    plt.imshow(V,cmap='gray')
    plt.xticks([])
    plt.yticks([])
    plt.title('V')
    plt.show()

    """画图:平滑后结果"""
    plt.figure(2)
    plt.subplot(1,3,1)
    plt.imshow(img[:,:,::-1])
    plt.title('原图')
    plt.xticks([])
    plt.yticks([])

    out = tran(img,5) #RGB分量处理后结果
    out = out[:,:,::-1] # BGR -> RGB
    plt.subplot(1,3,2)
    plt.imshow(out)
    plt.title('分别平滑RGB')
    plt.xticks([])
    plt.yticks([])

    V_trans = tran_V(V,5) #V通道处理结果
    HSV_out = cv2.merge([H,S,V_trans])
    HSV_out = cv2.cvtColor(HSV_out,cv2.COLOR_HSV2RGB) # HSV -> RGB
    plt.subplot(1,3,3)
    plt.imshow(HSV_out)
    plt.title('平滑HSV的亮度分量')
    plt.xticks([])
    plt.yticks([])
    plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值