ST表(查询不更改的数据的任意区间最大最小值)

思考: 有N个数,M次询问,每次给定[L,R] ,求区间内的最大值。 当N<= 10, M<=10时? 当N<= 10^5,M<=10^5时呢? 要考虑到时间复杂度 O 哟!!! 这种问题是区间最值问题(RMQ)。 暴力的复杂度是O(N),对第一个情况是比较简单,但是第二种情况就会超时,可能要跑好久。 而线段数的复杂度是O(logN) 对于每次询问,但是M变成10^6时,O(MlogN)也可能会超时。 我们需要一个对于每个查询复杂度为O(1),这样整体的复杂度为O(M) ,也是今天的主角 ST表。 学习ST表首先要了解两个前置技能,倍增算法和区间动态规化。

倍增思想:从字面的上意思看就是成倍的增长 。最核心的就是利用 任意整数可以表示成若干个2 的 次幂项的和 “ 这一性质(13 = 2^3 + 2^2 +2^013=23+22+20 )。

典型倍增:快速幕(求a的n次方)

#define ll long long

ll qpow(ll a,ll n,ll mod)

{ ll ans = 1;    

while(n)   
  {  if(n&1) ans = ans*a%mod;         
     a = a*a%mod;         
     n>>=1;    
  }     
return ans;
}


区间动态规划:在一个区间上的动态规划。

动态规划:问题的最优解如果可以由子问题的最优解推导得到,则可以先求解子问题的最优解,再构造原问题的最优解;若子问题有较多的重复出现,则可以自底向上从最终子问题向原问题逐步求解。 比如说,要派出你们班最高分,可以先找出每组最高的分,然后在比较,这是一个最简单的例子,实际上动态规划的子问题可能会相互影响。

我们现在要O(1)求出区间最大值,一个很自然的想法便是记录f(i,j)为[i,j]内的最大值显然有转移方程f(i,j)=max(f(i,j-1), a[j] ) 但是这样预处理是O(N^2)的,不能通过,我们考虑进一步优化观察到一个性质:

max操作允许区间重叠,也就是max(a,b,c)=max(max(a,b),max(b,c))(这个性质非常重要,决定了ST表是否能用来维护这种操作,例如ST表一般不能维护区间和,因为a+b+c !​=a+b+b+c),也就是我们可以由两个较小的、有重叠的区间直接推出一个大区间,因此我们可以少维护一些区间。这里也是这样,我们采用倍增思想,令f(i,j)为从a[i]​开始的、连续2^j个数的最大值,显然:f(i,0)=a[i]​(显然根据定义可得)f(i,j)=max(f(i,j-1),f(i+2^(j-1),j-1)。

[ l, r] 之间的长度为2的倍数时,例:找[1,4] 的最大值,我们直接给出f [1,2] 的值即可。但要是问[ 1,6] 的最大值呢? 这时我们就要用到max的性质了,我们可以求max( f[ 1, 4] ,f[ 3,6]) 即可。

为了解决每次查询,记询问区间长度为len, 我们从左端点向右找一段长为2^log(len)的区间(绿色

部分), 右端点向左也找一段长为2^log(len)的区间(蓝色部分), 显然这两段区间已经覆盖了整个区间(中间重叠了一块紫色色部分),取最大值即可 当然为了保证询问复杂度为O(1) ,我们需要提前预处理出每个log(len)向下取整后的值。整个算法总时间复杂度为O(N\log N+M) 。

板子:

#include<iostream>
#include<cmath>
using namespace std;
const int maxn=5e4+5;
int maxx[maxn][18];
int minn[maxn][18];
int lg[maxn]={-1};
int query(int l,int r){
	int len=lg[r-l+1];
	int ans1=max(maxx[l][len],maxx[r-(1<<(len))+1][len]);
	int ans2=min(minn[l][len],minn[r-(1<<(len))+1][len]);
	return ans1-ans2;
}
int main(){
	int n,q;
	cin>>n>>q;
	for(int i=1;i<=n;i++){
		cin>>maxx[i][0];
		minn[i][0]=maxx[i][0];
		lg[i]=lg[i/2]+1;
	}
	for(int i=1;i<=lg[n];i++)
	{
		for(int j=1;j+(1<<i)-1<=n;j++)
		{
			maxx[j][i]=max(maxx[j][i-1],maxx[j+(1<<(i-1))][i-1]);
			minn[j][i]=min(minn[j][i-1],minn[j+(1<<(i-1))][i-1]);
		}
	}
	while(q--){		
		int l,r;
		cin>>l>>r;
		cout<<query(l,r)<<"\n";
	}
} 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值