神经网络-完整模型框架 从0-1实现

学习感言

6月4日-今天学习了基于神经网络完整模型训练的框架,将完整代码复习一遍。整体框架步骤: 加载数据集(CIFAR10)—搭建神经网络—创建网络模型—损失函数(因为这是一个分类问题使用 交叉熵)—优化器—训练开始(包括多轮训练、优化模型、准确率计算、在tensorboard可视化训练结果),接下来正片开始。

在这里插入图片描述

完整代码呈现

1.加载数据集

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 训练数据集和测试数据集   数据集采用CIFAR10  下面会对这个数据集进行解释
train_data = torchvision.datasets.CIFAR10('dataset', train=True, download=True,
                                          transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10('dataset', train=False, download=True,
                                         transform=torchvision.transforms.ToTensor())     
                                                                  
train_data_size = len(train_data)  # 计算训练数据集大小
test_data_size = len(test_data)    # 测试数据集大小

# 利用dataloader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

对于CIFAR10 的解释
CIFAR-10 是一个常用的彩色图片数据集,用于机器学习和计算机视觉任务。它包含了 60,000 张 32x32 像素的彩色图片,这些图片被分为 10 个类别,每个类别包含 6,000 张图片。这 60,000 张图片被分为 50,000 张训练图片和 10,000 张测试图片。

CIFAR-10 的类别包括:
飞机 (airplane)
汽车 (automobile)
鸟 (bird)
猫 (cat)
鹿 (deer)
狗 (dog)
蛙类(frog)
马 (horse)
船 (ship)
卡车 (truck)

2.搭建神经网络
在这里插入从图片描述

class Whoiam(nn.Module):
    def __init__(self):
        super(Whoiam, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=5,stride=1 ,padding=2),#卷积操作
            nn.MaxPool2d(2),   # 池化
            nn.Conv2d(32, 32, kernel_size=5,stride=1 ,padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, kernel_size=5,stride=1 ,padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),  # 线性操作
            nn.Linear(64,10)
        )

    def forward(self, x):
        x = self.model(x)  # 前向传播 输入x调用上述模型进行一系列操作
        return x

3.创建网络模型以及训练所需要的函数

whoiam = Whoiam()  #将上述神经网络模型创建一个实例

loss_fn = nn.CrossEntropyLoss() # 损失函数(利用交叉熵 用于分类问题)

learning_rate = 0.01  # 学习速率
optimizer = torch.optim.SGD(whoiam.parameters(), learning_rate) #第一个参数模型第二个学习速率

# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数

#  训练轮数
epoch = 10

4.开始训练模型

writer = SummaryWriter('logs')

for i in range(epoch):
	print("---------第 {} 轮训练开始--------".format(i+1))
	# 训练步骤开始
	for data in train_dataloader:
		imgs,targets = data
		outputs = whoiam(imgs)
		loss = loss_fn(outputs,targets)  # 损失函数
		# 优化器优化模型
		optimizer.zero_grad() # 梯度归0 防止梯度迭代对训练造成误差
		loss.backward()   # 反向传播 计算梯度
		optimizer.step()

		total_train_step+=1 # 训练次数加1
		if(total_train_step % 100 == 0):
			print("训练次数: {},Loss: {}".format(total_train_step,loss.item()))
			# 在tensorboard 上可视化loss曲线
			writer.add_scalar('train_loss',loss.item(),total_train_step)
	
	# 测试步骤开始
	total_step_loss = 0
	total_accuracy = 0
	with  torch.no_grad(): # 消除梯度
		for data in test_dataloader:
			imgs,targets =data
			outputs = whoiam(imgs)
			loss = loss_fn(outputs,targets)
			total_step_loss+=loss        # 记录整体数据集误差
			accuracy = (outputs.argmax(1) == targets).sum()
			total_accuracy += accuracy
	print("整体测试集上的Loss: {}".format(total_step_loss))
	print("整体测试集上的准确率: {}".format(total_accuracy / test_data_size ))
	# tensorboard上可视化显示误差以及准确率曲线
	writer.add_scalar('test_loss', total_step_loss, total_train_step)
    writer.add_scalar('test_accuracy', total_accuracy /test_data_size, total_train_step)
    total_test_step+=1

	torch.save(Whoiam, "whoiam_{}.pth".format(i)) # 模型保存
    print("模型已保存")
writer.close()

5.训练结果显示

在这里插入图片描述

训练误差
在这里插入图片描述
测试准确率
在这里插入图片描述

如果我不能创造一个东西,那么我对它的理解也必然不够

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值