学习感言
6月4日-今天学习了基于神经网络完整模型训练的框架,将完整代码复习一遍。整体框架步骤: 加载数据集(CIFAR10)—搭建神经网络—创建网络模型—损失函数(因为这是一个分类问题使用 交叉熵)—优化器—训练开始(包括多轮训练、优化模型、准确率计算、在tensorboard可视化训练结果),接下来正片开始。
完整代码呈现
1.加载数据集
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 训练数据集和测试数据集 数据集采用CIFAR10 下面会对这个数据集进行解释
train_data = torchvision.datasets.CIFAR10('dataset', train=True, download=True,
transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10('dataset', train=False, download=True,
transform=torchvision.transforms.ToTensor())
train_data_size = len(train_data) # 计算训练数据集大小
test_data_size = len(test_data) # 测试数据集大小
# 利用dataloader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
对于CIFAR10 的解释
CIFAR-10 是一个常用的彩色图片数据集,用于机器学习和计算机视觉任务。它包含了 60,000 张 32x32 像素的彩色图片,这些图片被分为 10 个类别,每个类别包含 6,000 张图片。这 60,000 张图片被分为 50,000 张训练图片和 10,000 张测试图片。CIFAR-10 的类别包括:
飞机 (airplane)
汽车 (automobile)
鸟 (bird)
猫 (cat)
鹿 (deer)
狗 (dog)
蛙类(frog)
马 (horse)
船 (ship)
卡车 (truck)
2.搭建神经网络
class Whoiam(nn.Module):
def __init__(self):
super(Whoiam, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=5,stride=1 ,padding=2),#卷积操作
nn.MaxPool2d(2), # 池化
nn.Conv2d(32, 32, kernel_size=5,stride=1 ,padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, kernel_size=5,stride=1 ,padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64), # 线性操作
nn.Linear(64,10)
)
def forward(self, x):
x = self.model(x) # 前向传播 输入x调用上述模型进行一系列操作
return x
3.创建网络模型以及训练所需要的函数
whoiam = Whoiam() #将上述神经网络模型创建一个实例
loss_fn = nn.CrossEntropyLoss() # 损失函数(利用交叉熵 用于分类问题)
learning_rate = 0.01 # 学习速率
optimizer = torch.optim.SGD(whoiam.parameters(), learning_rate) #第一个参数模型第二个学习速率
# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
# 训练轮数
epoch = 10
4.开始训练模型
writer = SummaryWriter('logs')
for i in range(epoch):
print("---------第 {} 轮训练开始--------".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs,targets = data
outputs = whoiam(imgs)
loss = loss_fn(outputs,targets) # 损失函数
# 优化器优化模型
optimizer.zero_grad() # 梯度归0 防止梯度迭代对训练造成误差
loss.backward() # 反向传播 计算梯度
optimizer.step()
total_train_step+=1 # 训练次数加1
if(total_train_step % 100 == 0):
print("训练次数: {},Loss: {}".format(total_train_step,loss.item()))
# 在tensorboard 上可视化loss曲线
writer.add_scalar('train_loss',loss.item(),total_train_step)
# 测试步骤开始
total_step_loss = 0
total_accuracy = 0
with torch.no_grad(): # 消除梯度
for data in test_dataloader:
imgs,targets =data
outputs = whoiam(imgs)
loss = loss_fn(outputs,targets)
total_step_loss+=loss # 记录整体数据集误差
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的Loss: {}".format(total_step_loss))
print("整体测试集上的准确率: {}".format(total_accuracy / test_data_size ))
# tensorboard上可视化显示误差以及准确率曲线
writer.add_scalar('test_loss', total_step_loss, total_train_step)
writer.add_scalar('test_accuracy', total_accuracy /test_data_size, total_train_step)
total_test_step+=1
torch.save(Whoiam, "whoiam_{}.pth".format(i)) # 模型保存
print("模型已保存")
writer.close()
5.训练结果显示
训练误差
测试准确率
如果我不能创造一个东西,那么我对它的理解也必然不够