shap显示全部的特征

shap.plots.bar(shap_values, max_display=12)

用shap做解释性分析。其中条形图中,47条特征不能全部显示出来,最后在“shap”的官方文档中找答案,修改max_display。

来自:

https://wjrsbu.smartapps.cn/zhihu/article?id=554058433&isShared=1&uid_f=1609533562507677696&_swebfr=1&_swebFromHost=vivobrowser&bdswankey=vivobrowser%3A%2F%2Fswan%2FoFx3nbdDN6GWF3Vb0Wh7EDBMBxRTTcfe%2Fzhihu%2Farticle%3Fid%3D554058433%26from%3D1599_N_9Eu9PP6eTyH_1_N%26searchParams%3D%257B%2522failUrl%2522%253A%2522https%253A%255C%252F%255C%252Fzhuanlan.zhihu.com%255C%252Fp%255C%252F554058433%2522%257D%26useTpl%3D1

 

SHAP值(SHapley Additive exPlanations)是一种用于解释机器学习模型预测结果的方法。它通过计算每个特征对预测结果的贡献度,来解释模型的决策过程。SHAP值的计算基于合作博弈论中的Shapley值,旨在公平地分配特征对预测结果的贡献。 如果你发现SHAP值只显示第一个特征值,可能有以下几个原因: 1. **数据问题**:检查你的数据是否正确加载,并且所有特征都包含在计算中。 2. **模型问题**:确保你使用的模型支持多特征SHAP值计算。有些模型可能只支持部分特征SHAP值计算。 3. **代码问题**:检查你的代码是否正确地计算和显示了所有特征SHAP值。确保你没有在代码中限制只显示第一个特征值。 4. **库版本问题**:确保你使用的SHAP库版本是最新的,有时候旧版本可能存在bug。 以下是一个简单的示例代码,展示如何计算和显示所有特征SHAP值: ```python import shap import numpy as np import xgboost as xgb # 创建一个简单的XGBoost模型 X, y = shap.datasets.boston() model = xgb.XGBRegressor().fit(X, y) # 创建一个TreeExplainer对象 explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X) # 打印所有特征SHAP值 print("SHAP values for all features:") print(shap_values) # 可视化所有特征SHAPshap.summary_plot(shap_values, X) ``` 在这个示例中,我们使用XGBoost模型和Boston房价数据集来计算SHAP值,并通过`shap.summary_plot`函数可视化所有特征SHAP值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓬莱紫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值