手撕Vision Transformer的过程及感悟

        Vision Transformer模型(ViT模型)是视觉领域一个比较重要的模型,为了更深入的了解模型以及锻炼自己的实践能力,最近手撕了ViT,首先声明,代码是一位叫做rwightman的大神实现的,源码地址是:

https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py

        本人按照他的代码及思路一点一点搭建ViT模型,本篇博文就来认真解读一下该大神搭建ViT模型的代码风格和代码架构,看一看他是如何用400多行的代码(其实仅200多行)实现ViT的。在他的代码中,我也是学到了很多实战技巧和代码框架技巧,不过还有一些没有看得特别懂,不过整个架构是看明白了,在此和各位分享。

1.Vision Transformer的整体架构

在搭建VIT之前,我们十分有必要去将它的整体框架烂熟于心,原论文中的架构图如下:

由架构图可以看出,VIT模型主要由以下三个部分构成:

1.Embedding层。输入的图片经过该层后被转化为一行行token,每个patch一行token。

2.Encoder层。将蕴含分类和位置信息的token经过该层进行特征提取。注意Encoder层是可以堆叠的。

3.MLP head层。取出Encoder层的输出中用于分类的那一行token,经过该层之后完成分类任务。

其实层与层之间也有一些细节上的操作处理,在最后一个部分我会细说。此部分是为了先让大家了解VIT的整体架构。

2.Vision Transformer各层的架构图以及具体实现

2.1Embedding层

Embedding层的架构图:

代码:

class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = (img_size, img_size)
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."

        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x

初始化函数:我们需要用到的参数有:img_size:图片的大小, patch_size:一个patch的大小, in_c:输入的通道数, embed_dim:一个token的维数, norm_layer:规范化函数,然后初始化卷积层和规范化层即可。

前向传播函数:首先判断一下图片大小是否符合规范,然后过一个卷积层的前向传播,再过一个Norm规范化层,最后得到每张图片的patch行的token。

2.2Encoder层

Encoder层的架构图:

由架构图可知,Encoder主要分为两个模块,一个是multi-head-Attention模块,一个是MLP模块。

代码(请大家先把下面两个子模块看完之后再来看Encoder的代码!!!):

class Block(nn.Module):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_ratio=0.,
                 attn_drop_ratio=0.,
                 drop_path_ratio=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super(Block, self).__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                              attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

2.2.1multi-head-Attention模块

multi-head-Attention模块架构图:

总的来说,从上一层传入的token经过了Linear层,并通过对多维张量的操作,得到了注意力机制的重要参数q,k,v,然后进行注意力机制的流程,注意,q和k计算之后会有一个dropout,然后为了更好地让信息融合,会再经过一个Linear层,之后再过一个dropout层,防止过拟合。

代码:

class Attention(nn.Module):
    def __init__(self,
                 dim,   # 输入token的dim
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_ratio=0.,
                 proj_drop_ratio=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x):
        # [batch_size, num_patches + 1, total_embed_dim]
        B, N, C = x.shape

        # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
        # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
        # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

初始化函数:我们需要用到的参数有:dim: 输入token的维数,num_heads=8:头的数量, qkv_bias=False:qkv操作是否有偏置, qk_scale=None:dk, attn_drop_ratio=0.:q和k运算之后过的dropout层的p, proj_drop_ratio=0.:最后一个dropout层的p。随后初始化每一个Linear层和dropout层。

前向传播函数:见代码,此处就不多言了。

2.2.2MLP模块

MLP模块架构图:

代码:

class Mlp(nn.Module):
    """
    MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

初始化函数:in_features:输入维度, hidden_features=None:隐藏层维度, out_features=None:输出维度, act_layer=nn.GELU:激活函数, drop=0.:dropout层的p

前向传播函数:见代码,此处不多言。

2.3MLP head层

MLP head层比较简单,没有特别的写一个class来作为一个模块,因为它是用作分类的,所以一个Linear层就可以解决,参数为nn.Linear(dim,分类个数)。

3.Vision Transformer模型的整体搭建

关于VIT模型整体搭建这块我就不画架构图了,架构和最开始那个图一致,但主要是中间的处理细节,下面我会用文字来详细讲解一遍rwightman大神是怎么搭的。(注意:我没有加那个蒸馏头那个维度,关于蒸馏头大家可以去读一下代码就知道是什么意思了)

代码:

class VisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
                 embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
                 qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
                 attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
                 act_layer=None):
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim
        self.num_tokens = 1
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_ratio)

        dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)]  # stochastic depth decay rule
        self.blocks = nn.Sequential(*[
            Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                  drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
                  norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)
        ])
        self.norm = norm_layer(embed_dim)

        # Classifier head(s)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
        
        # Weight init
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        nn.init.trunc_normal_(self.cls_token, std=0.02)
        self.apply(_init_vit_weights)

    def forward(self, x):
        # [B, C, H, W] -> [B, num_patches, embed_dim]
        x = self.patch_embed(x)  # [B, 196, 768]
        # [1, 1, 768] -> [B, 1, 768]
        cls_token = self.cls_token.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]
        x = self.pos_drop(x + self.pos_embed)
        x = self.blocks(x)
        x = self.norm(x)
        x = self.head(x)
        return x

VIT整体模型解读:

首先,对于输入x,x是一个mini_batch,是一个四维张量,(B,C,H,W),然后我们实例化一个embedding层的对象:

self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)

之后我们直接使用该层的forward函数:x = self.patch_embed(x)

然后我们需要加一个关于分类的张量,它的维度和token的维度一致,是三维的,(1,1,embed_dim),然后将它加入到每一个patch的token的第一维,这里需要用到torch.expand函数和torch.cat函数:

#初始化
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
#前向传播
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]

我们接下来进行位置编码的设置,此处设置可学习的位置编码:

#初始化
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
#前向传播
 x = self.pos_drop(x + self.pos_embed)

接着过N个堆叠的Encoder和规范化层:

#初始化
self.blocks = nn.Sequential(*[
            Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                  drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
                  norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)
        ])
        self.norm = norm_layer(embed_dim)

#前向传播
x = self.blocks(x)
x = self.norm(x)

最后过一个MLP head层:

#初始化
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
#前向传播
x = self.head(x)

        好了,以上就是本篇博文的所有内容,主要围绕ViT模型的搭建来展开,模型的学习并不是一朝一夕,而是需要耐下心来、认真研究具体实现过程,把别人的好的转化为自己的,这样才能提升。

  • 53
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值