复盘
7:50 才到的机房。
T1 神秘构造,觉得很难处理,c 数组限制很多还会互相影响;T2 貌似是推性质然后 DP ,看数据范围好像暴力不太好拿;T3 神秘;T4 看出来 50 pts 的暴力,而且记得勾股数好像有个同式,说不定就是正解的方向。大概 20 min
再推 T1 ,首先,显然都要等于 s u m 2 \frac{sum}{2} 2sum 。然后发现 c 数组的顺序其实没那么重要,同一个位置 A 数组 与 B 数组的组合只有四种, 11 , 12 , 21 , 22 11,12,21,22 11,12,21,22 ,只统计选择的个数就行。再想,列方程,发现可以解出来 12 , 21 12,21 12,21 情况的数量关系,考虑枚举其中 1 个,另一个也就已知。最后对于 11 , 22 11,22 11,22 的情况就是调节一下 s u m sum sum,应该好判,开码。8:45 一遍过了样例
节奏非常好,接着看 T2 ,首先发现操作的区间一定不交,然后猜想:对于一个子段,应该是那些本来就待在“自己位置上”的数会使这个子段的答案 -1 ,顺着这个思路,又推了一些比如相同的数如何处理的细节,树状数组可以维护在该子段内的位置。9:15,决定开码。
细节好难搞,后来发现有问题!按这个思路处理的话需要 n 3 n^3 n3 ,细节巨多,而且各种优化的思路都假了。看了一眼只有 5 pts,果断放弃。9:50,决定打 T 4 T4 T4 暴力
首先考虑 值域 V ≤ 100 V\leq100 V≤100 的做法,好像能预处理所有勾股数对数,打表发现只有 52 52 52 个。
调了写细节,写完已经 10:40 ,发现大样例里并没有值域小的,gg
想打 n 2 n^2 n2 ,但脑子抽了没想到 预处理所有区间
11:00 ,决定看看能不能拿点 T3 的分,再次审完题觉得愈发神秘了,二元组 → \to → 只要奇数次 → \to → 还有 m e x mex mex ???果真是魔法。看着 T = 0 T=0 T=0 的档也没啥想法,无奈,弃
11:20 最后决定看 T2 ,还是无果,遗憾离场
分数: 100 + 0 + 0 + 50 = 150
赛后发现 T2 推的第二个性质假了,一个 “待在自己位置上的数” 如果左侧有个很大的数一样得交换啊!但考虑单点贡献的方向对了,所以还是要想的广一点,遇到非常难处理的点一定要反思是不是某个性质假了
T4 的 n 2 n^2 n2 预处理,暴力的技巧还是得熟悉
题面
T1
T2 性质!
首先操作区间一定不交
其次要考虑转化为单点贡献,反着求,考虑一个点在怎样的子段中可以不被排序
发现:左侧的数都小于等于它,右侧都大于等于它
单调栈维护即可
#include<bits/stdc++.h>
using namespace std;
typedef long long LL ;
const int N = 3e6 + 10 ;
int read()
{
int x = 0 ; char c = getchar() ;
while( !isdigit(c) ) c = getchar() ;
while( isdigit(c) ) x = (x<<1)+(x<<3)+(c^48) , c = getchar() ;
return x ;
}
int n , a[N] ;
// 神奇性质题
// 考虑单点贡献,某个数在怎样的子段里不用重新排序
// 很容易得出错误的结论,但正确的是:左边都小于等于它,右边都大于等于它
// 就很好单调栈处理了
int stk[N] , top , L[N] ;
LL ans , res ;
int main()
{
n = read() ;
for(int i = 1 ; i <= n ; i ++ ) {
a[i] = read() ;
while( top && a[i] >= a[stk[top]] ) top -- ;
L[i] = stk[top] ;
stk[++top] = i ;
res = res + 1LL*(n-i+2)*(n-i+1)/2 ;
}
top = 0 ; stk[0] = n+1 ;
for(int i = n ; i >= 1 ; i -- ) {
while( top && a[i] <= a[stk[top]] ) top -- ;
ans = ans + 1LL*(i-L[i])*(stk[top]-i) ;
stk[++top] = i ;
}
printf("%lld\n" , res-ans ) ;
return 0 ;
}