基于《高级计算机图形学原理与实践》(西安科技大学)的学习笔记(三)


三、自由曲线与曲面

1、基本概念

(1)曲线、曲面的显式、隐式、参数表示
显式:对于一个平面曲线,显式表示一般形式是:y=f(x) 。
隐式:如一个平面曲线方程,表示成 f(x,y)=0 的隐式表示。
参数表示:形如 x=f(t),y=f(t),z=f(t) 的表达式,其中 t
为参数。即曲线上任一点的坐标均表示成给定参数的函数。
(2)参数表示的主要优势
(1)可以满足几何不变性的要求,坐标变换后仍保持几何形状不变;
(2)有更大的自由度来控制曲线、曲面的形状;
(3)参数表示的曲线、曲面可对其参数方程直接进行几何变换;
(4)参数方程中,代数、几何相关和无关的变量是完全分离的,而且对变量个数不限,从而便于用户把低维空间中曲线、曲面扩展到高维空间去;
(5)易于用矢量和矩阵表示几何分量,简化了计算;
(6)规格化的参数变量 t∈[0,1] ,使其相应的几何分量是有界的,而无需重新定义边界。
(3)插值与逼近
插值(Interpolation):当用一组数据点来指定曲线的形状时,曲线精确地通过给定的数据点且形成光滑的曲线,称为曲线的插值。
逼近(Approximation):当用一组控制点来指定曲线的形状时,曲线被每个控制点所吸引,但并不经过这些控制点,称为曲线的逼近 。
插值与逼近统称为拟合(Fitting)
在这里插入图片描述

(4)光顺与连续性
光顺:通俗含义指曲线的拐点不能太多。对平面曲线而言,相对光顺的条件是:
a)具有二阶几何连续性( 在这里插入图片描述);
b)不存在多余拐点和奇异点;
c)曲率变化较小。
连续性:设计一条复杂曲线时,常常通过多段曲线组合而成,这需要解决曲线段之间如何实现光滑连接的问题,即为连续性问题。

(5)曲线间连接的光滑度的度量有两种
一种是函数的可微性,把组合参数曲线构造成在连接处具有直到 n 阶连续导矢,即 n 阶连续可微,这类光滑度称之为 在这里插入图片描述或 n 阶参数连续性。
另一种称为几何连续性,组合曲线在连接处满足不同于 在这里插入图片描述 的某一组约束条件,称为具有 n 阶几何连续性,简记为 在这里插入图片描述 。曲线光滑度的两种度量方法并不矛盾,在这里插入图片描述 连续包含在 在这里插入图片描述 连续之中。

(6)参数连续性
C^0,指相邻两段曲线在结合点处具有相同的坐标。
C^1,指相邻两段曲线在结合点处具有相同的一阶导数。
C^2,指相邻两段曲线在结合点处具有相同的一阶导数和二阶导数。
在这里插入图片描述
(7)几何连续性:
与参数连续性不同,只要求参数导数成比例,而不是相等!
类似分类:
G^0,指相邻两段曲线在结合点处具有相同的坐标。
G^1,指相邻两段曲线在结合点处的一阶导数成比例 。
G^2,指相邻两段曲线在结合点处的一阶导数和二阶导数成比例,即:曲率一致! 。

2、参数样条曲线与Hermite

(1)三次参数样条曲线(C2拟合)
特点
1、使用三次参数多项式来建立
2、曲线通过特定的型值点
3、保持C2连续性
工程选择原因
1、与高次参数多项式相比,三次参数多项式计算量少且存储稳定
2、更低次的参数多项式难以描述复杂的自由曲线形状
通过n个型值点的连续曲线获得
1、使用三次参数样条分段插值函数:得到通过两个型值点处的分段三次参数样条曲线
2、对n个型值点,其n-1段曲线之间要平滑连接,能建立n-2个方程组
3、根据边界条件再添加两个方程,综合解出所有系数!
<1>三次参数样条曲线的定义
已知n个型值点Pi(i=1,2…,n)且相邻型值点不重合,若P(t)满足下列条件:
1、型值点Pi在函数P(t)上;
2、P(t)在整个区间[P1,Pn]上二阶连续可导;
3、在每个子区间 [Pi,Pi+1] (i=1,2…,n-1)上,分段函数Pi(t)都是参数t的三次多项式,则称P(t)是过型值点的三次参数样条函数,由它构成的曲线称为三次参数样条曲线。
参数t是相邻型值点之间的弦长,t∈ [0,Li]
在这里插入图片描述 在这里插入图片描述
<2>系数求解
第i段三次参数样条曲线的表达式为:
在这里插入图片描述
当t=0时,第i段曲线对应于端点Pi:
在这里插入图片描述
当t=Li时,第i段曲线对应于端点Pi+1:
在这里插入图片描述
一阶、二阶求导,有:
在这里插入图片描述
第i段曲线在Pi处的二阶导矢量Mi为:
在这里插入图片描述
第i段曲线在Pi+1处的二阶导矢量Mi+1为:
在这里插入图片描述
联合(式1-4),可解得:
在这里插入图片描述
即:分段三次参数样条曲线方程的四个参数B1、B2、B3、B4可由N个二阶导M1—Mn求得。只需求出二阶导M1—Mn即可。
<3>边界条件
利用P(t)一阶导数连续来求解二阶导数矢量Mi,则有:
在这里插入图片描述
带入参数方程 在这里插入图片描述,令:在这里插入图片描述
则有:
在这里插入图片描述
i=2,…,n-1,则可得n-2个方程。
为了求解n个二阶导M1—Mn,还需要两个方程。
两个方程可由起点和终点的两个边界条件获得!

常用的三种边界条件为:
<1>夹持端
给出始端一阶导P’1和终端一阶导P’n,将P’1(0) = P’1 ,代入(式5):
在这里插入图片描述
P’n-1(Ln)=P’n,代入(式5):
在这里插入图片描述
<2>自由端
始端和终端二阶导为0
在这里插入图片描述
<3>抛物端
第1段和第n-1段的二阶导为常数
在这里插入图片描述
三种边界条件可统一成下面的表达式:
在这里插入图片描述
二阶导数矢量Mi求解方程可用三对角阵表示为:
在这里插入图片描述
使用追赶法可以求出唯一解,把x,y,z都可看成t的三次样条函数,即:求解三次样条方程.

(2) Hermite样条曲线(C1拟合)
特点
1、每个曲线段仅依赖于端点的约束,可以局部调整
2、分段三次多项式,由两个端点的坐标和切线来定义

Hermite曲线方程的矩阵形式为:
在这里插入图片描述
假定型值点Pi和Pi+1之间的曲线段为P(t),t区间[0,1],Hermite的边界条件为:
在这里插入图片描述
Ri和Ri+1是Pi和Pi+1处的导数值。

两个顶点和两个一阶导边界条件代入可得
Hermite边界条件的矩阵表示:
在这里插入图片描述
利用上述方程对多项式系数求解:
在这里插入图片描述
式中Mh称为Hermite矩阵,是边界约束矩阵的逆。
样条曲线P(t)可表示为:
在这里插入图片描述
展开成代数形式为:
在这里插入图片描述
其中H0(t), H1(t), H2(t), H3(t)称为Hermite样条调和函数:
(1)调和了边界约束值,在整个参数方位内产生曲线坐标值!
(2)仅与参数t有关,而与初始条件无关!
(3)调和函数对三个坐标分量x,y,z的作用相同!

Cardinal样条是Hermite样条的变形,其边界条件为:
在这里插入图片描述
u为一可调参数,称为张力参数,可控制曲线型值点的松紧程度。

三次参数样条曲线、Hermite样条曲线和Cardinal样条曲线的性质和优缺点
(1)三次参数样条曲线、Hermite样条曲线和Cardinal样条曲线属于拟合范畴。
(2)三次参数样条曲线可以达到二阶参数连续性C2,需要边界条件确定分段插值函数 ;(3)Hermite样条曲线可以达到一阶参数连续性C1,需要每个型值点处的一阶导数作为初始条件;
(4)Cardinal样条曲线是Hermite样条曲线的变形,仅由相邻型值点(两个辅助计算端点)的坐标就可以计算出一阶导数。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值