Local Model Poisoning Attacks to Byzantine-Robust Federated Learning论文阅读笔记

Local Model Poisoning Attacks to Byzantine-Robust Federated Learning

1、Introduction

  • 拜占庭鲁棒联邦学习简介

  • 现有的data poisoning attacks 效果差

  • local model poisoning attacks简介

在这里插入图片描述

  • 主要贡献:

    1. 对拜占庭-鲁棒联邦学习进行了第一次系统研究
    2. 提出了localmodel poisoning attacks
    3. 结合了两种现有的防御方式

2、 Background and Problem Formulation

  • 联邦学习三步:

    1. master device发送现有的全局模型参数到worker devices
    2. worker devices通过自己的本地训练集更新参数,完成后发送给master device
    3. master device聚合本地模型得到一个新的全局模型
  • 拜占庭-鲁棒聚集规则

    1. Krum and Bulyan***(存疑)***

      在m个本地模型中选一个最相似的作为全局模型

    2. Trimmed mean

      先去掉2β个极大&极小模型参数,再对剩下的求平均

      (β一般要≥compromised worker的数量,<worker总数的一半)

    3. Median

      先去掉2β个极大&极小模型参数,再找到剩下数据中的中位数

  • 问题定义和攻击模型

    目标是使global model朝着无攻击方向最相反的方向偏移

    攻击者能力:

    1. 是否知道聚集规则
    2. full knowledge or partial knowledge

3、Our Local Model Poisoning Attacks

  • 优化问题
    在这里插入图片描述

    前c个为compromised workers,控制w_1`到w_c`,目的是使得s(全局模型参数变化方向的列向量)最大化。

  • Attacking Krum

    ​ 首先,将 w’_1 限制如下:w’_1=w_Re-λs,其中 w_Re 是当前迭代中从主设备接收的全局模型(即上一次迭代中获得的全局模型),并且λ> 0。其次,为使 w_1 更有可能被 Krum 选择,将其他 c-1 折衷的局部模型设计为接近 w’_1

在这里插入图片描述

full knowledge和partial knowledge的区别就是一个用全部的模型参数预估s、一个用compromised workers预估s

  • Attacking Trimmed Mean

    ​ 在full knowledge下,如果 s_j = -1,那么将在间隔 [w_(max,j) ,b·w_(max,j) ] 中随机采样 c 个数字,否则,将以[w_(min,j)/ b, w_(min,j)] 间隔对 c 个数字进行随机采样。Our attack does not depend on b once b > 1. In our experiments, we set b = 2.

    ​ 在partical knowledge下,使用compromised workers上的局部模型来估算变化方向的变量和w_(max,j)、w_(min,j)

  • Attacking Median

    和Attacking Trimmed Mean几乎相同

4、Evaluation

  • 实验基本设置

    数据集采用 MNIST, FashionMNIST, CH-MNIST and Breast Cancer Wisconsin (Diagnostic) 这四个。

    机器学习分类:(存疑)

    ​ 1、Multi-class logistic regression (LR) 多类逻辑回归

    ​ 2、Deep neural networks (DNN)深度神经网络

  • 对比攻击

    • 高斯攻击

      用compromised workers的参数构造一个高斯分布,用其中特定的数字作为局部模型参数

    • 标签反转攻击

      即字面意义的换标签

    • 基于反向梯度优化的攻击

      存疑

    • 全部知识攻击和部分知识攻击(本文)

      参数设置如图所示:

在这里插入图片描述

  • 攻击结果

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-igBFmPt6-1688571855490)(D:\typora\photograph\image-20220914222137101.png)]

    使用本文的攻击方法得到的错误率大多显著高于其他已知的攻击方法

  • 其他因素对于实验结果的影响

    ​ 如随机梯度下降轮数、worker devices数目、compromised workers数目、修剪均值攻击中的β、Krum中的参数以及中毒迭代的占比

  • Results for Unknown Aggregation Rule

    对于未知聚集规则,本攻击具有可移植性

在这里插入图片描述

  • 与基于反向梯度优化的攻击的对比

在这里插入图片描述

5、Defenses

  • Error Rate based Rejection (ERR)

    ​ 删除了对全局模型的错误率具有较大负面影响的局部模型(受 RONI 的启发,后者删除了对模型的错误率具有较大负面影响的训练示例)

  • Loss Function based Rejection (LFR)

    ​ 删除了导致大量损失的局部模型(受 TRIM 的启发,删除了对损失有较大负面影响的训练示例)

  • Union (i.e., ERR+LFR)

防御结果:Union>LFR>ERR,但仍然有些情况无法防御
在这里插入图片描述

6、Future Work

  • 对定向攻击的研究

  • 对本文攻击的防御手段的研究

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Poison frogs! targeted clean-label poisoning attacks on neural networks”这是一个关于对神经网络进行有针对性的干净标签中毒攻击的研究项目。在这种攻击中,研究人员通过修改训练数据集中的特定标签,以欺骗神经网络模型以误分类输入样本。 干净标签中毒攻击是一种隐蔽的攻击方式,因为攻击者不需要修改图像本身或添加任何可见的攻击标记。相反,他们通过对训练数据集进行精心设计的修改,使神经网络在应用中出现错误分类。这种攻击方法可能会导致严重后果,例如在自动驾驶汽车或安全系统中造成事故或功能失效。 这个项目的目的是研究这种攻击方法的可行性和效果,并提出对抗这种攻击的解决方案。研究人员首先对训练数据集进行修改,以使特定类别的图像被误分类为其他类别。然后,他们使用已经训练好的神经网络模型,通过修改训练数据集中的特定图像标签,使模型在测试阶段错误地将这些特定图像分类为不同的类别。 结果表明,即使在高性能的神经网络上进行干净标签中毒攻击也是可行的。这些攻击可以在不影响模型在其他正常输入上性能的情况下,误导模型对特定图像的分类。这使得攻击者能够操纵模型的行为,甚至可能导致系统的安全漏洞和错误决策。 为了对抗这种攻击,研究人员提出了一种改进的训练策略,称为“防御机制”。这种方法可以增强模型对干净标签中毒攻击的鲁棒性,并提供了一种有效的方法来检测和解决这种攻击。 总体而言,这个项目揭示了干净标签中毒攻击在神经网络中的潜在威胁,并提供了对抗这种攻击的解决方案。这有助于进一步加强神经网络模型在面临安全挑战时的鲁棒性,并推动相关领域的研究和技术发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值