Federated learning联合学习(1)-基础知识

联合学习(Federated Learning)是一种在不交换本地数据样本的情况下,在多个边缘设备或服务器上训练机器学习算法的技术。它解决了隐私、监管和网络限制等问题,通过本地模型的参数平均来创建全局模型。联合学习中的隐私问题需要考虑差分隐私,以防止从模型中推断出训练数据信息。此外,个性化学习目标旨在解决全局模型与局部性能之间的冲突。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘抄
Federated learning (aka collaborative learning) is a machine learning technique that trains an algorithm across multiple decentralized edge devices or servers holding local data samples, without exchanging their data samples.

不同于:

  • 传统centralized ML techniques 所有数据上传到一个sever.
  • 经典的decentralized approaches假设local数据是 identically distributed.

设定

  1. 训练数据不能远离其来源。这种约束的原因可能包括隐私问题监管障碍实际工程限制(网络连接昂贵,速度慢或不可靠,或数据量太大了)。
  2. 有助于无法收集数据的情况。

联合平均

Process:

【Google2016】
-一个general的原则就是用本地数据训练本地模型并且以一定的频率与其他本地模型交换parameters来产生一个global model. (server可有可无)
-Sever向每个node发送训练特定类型的模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值