【小土堆】19/33最大池化

池化层会大大减小数据训练量

最大池化我们以2的为例MaxPool2d

主要使用的参数是:

kernel_size:是池化核的大小,是在卷积过程中移动的格数

Ceil_model:当值为True的时候,数值个数不足保留,为False的时候数值个数不足则不保留

例如:一个5*5的输入图象,和3*3的池化核

1

2

0

3

1

0

1

2

3

1

1

2

1

0

0

5

2

3

1

1

2

1

0

1

1

输入图象(5*5)

池化核(3x3), kernel_size=3

2

3

5

1

Ceil_model=True

2

Ceil_model=False

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

#准备数据集
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True,
                                      transform= torchvision.transforms.ToTensor())
#加载数据集
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)

#构建简单的网络神经
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, ceil_mode=False)
    def forward(self, input):
        output = self.maxpool1(input)
        return output
tudui = Tudui()
print(tudui)
writer = SummaryWriter('logs_maxPool')
step = 0
#从数据集中取数据
for data in dataloader:
    print(data)
    imgs, targets = data
    writer.add_images("input",imgs,step)
    output = tudui(imgs)
    writer.add_images("output",output,step)
    step += 1
writer.close()

结果为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值