一些关于变分模态分解(VMD)方法的综述(一)

        变分模态分解(Varational Mode Decomposition, VMD)是Dragomiretskiy等人[1]在2014年提出一种自适应、完全非递归的模态变分和信号处理的方法,具有可以确定模态分解个数的优点,其自适应性表现在根据实际情况确定所给序列的模态分解个数,随后的搜索和求解过程中可以自适应地匹配每种模态的中心频率和有限带宽,并且可以实现IMF的有效分离、信号的频域划分,进而得到给定信号的有效分解成分,最终获得变分问题的最优解。

        VMD方法克服了EMD方法存在端点效应和模态分量混叠的问题(通过控制带宽来避免混叠现象),具有更坚实的数学理论基础;可以降低复杂度高和非线性强的时间序列非平稳性,分解获得包含多个不同频率尺度且相对平稳的子序列,适用于非平稳性的序列。但是选择合适的分解层数K值对分解是否完全至关重要,K取值过大会导致模态裂解造成过分解;K取值过小则会将多个模态杂糅在一起或者遗漏有效模态造成欠分解。同时,随着K值的增大,完成整个计算的时间也显著增加。

        文献[2]针对实际应用中使用单一惩罚因子分解多振源干扰信号不能提取有效故障特征的问题,提出了一种基于参数优化VMD的滚动轴承故障特征的提取方法,通过基于优化算法选择各模态对应的惩罚因子,实现各模态对应最佳惩罚因子的自适应选择。

        文献[3]针对VMD因需提前预设参数而影响信号的分解精度,提出了一种基于能量截止法将变分模态分解改进为递归模式算法,采用目标信号功率谱峰值所对应的频率以初始化变分模态分解所需的中心频率和粒子群优化算法对具有带宽约束能力的惩罚因子进行最优取值,与传统的VMD方法相比,该方法具有更高的计算效率。

        文献[4]针对VMD的分解层数K的选定问题,提出一种基于归一化香农熵对VMD进行参数优化,该方法成功对信号进行自适应K值的分解。

        文献[5]针对提取淹没于环境和结构噪声下风力机轴承故障信号,提出了一种基于能量追踪法和粒子群优化算法的优化递归VMD方法,采用该方法获取多分量并通过多重分形谱特征因子最大值选取有效信息分量,最后通过支持向量机和BP神经网络进行故障分类。

        文献[6]针对形态学滤波算法最佳结构元素尺度难以确定的不足,提出了一种峭度-均方根准则优化结构元素尺度参数,通过自适应寻求最优解,实现快速、自适应滤波。

        文献[7]针对VMD分解模态的个数对分解结果的影响,提出一种基于最大幅值变分模态分解和均方根熵结合的优化方法,以各分量最大幅值之间的关系来确定最佳分解参数和信号的均方根熵作为故障特征参量,最后结合粒子群优化算法优化的支持向量机共同搭建故障模型,达到更好的分类效果。

        文献[8]针对滚动轴承早期故障信息微弱而难以提取的问题,采用最小平均包络熵作为目标函数构造自适应变分模态分解算法,将加权峭度指标作为选择有效模态分量的依据并使用Teager能量算子对重构信号进行解调,最后采用快速傅里叶变换对信号瞬时Teager能量进行分析识别故障频率,该方法诊断效果优于传统的VMD、EEMD和LMD的分解算法。

      文献[9]提出构建一种传感器优化布置的齿轮箱轴承故障特征提取方法,首先将采集的振动信号进行奇异值(SVD)降噪,然后对降噪后的信号进行基于方差贡献率的信息融合并进行VMD分解,最后选取信息熵最小本征模态分量(IMF)进行Teager能量谱分析,提取滚动轴承的故障特征。

       文献[10]针对轴承故障特征提取困难的问题,提出时-频加权峭度指标来选择最佳模态分量的方法,采用能量损失系数和皮尔逊系数作为迭代终止条件,将信号分解为多个本征模式分量,选择最大时-频加权峭度对应的模式分量作为最佳模式分量并对其采用共振解调技术,实现对轴承故障的识别。

        文献[11]针对奇异谱分析结果易受参数和噪声的影响,提出信号多分辨高阶奇异谱熵分析方法,通过对IMF分别进行多尺度高阶奇异谱熵分析获取高阶奇异谱熵,并且进行能量加权作为特征向量,最后结合深度信念网络进行故障诊断。

        文献[12]提出为更好地表征电机轴承的退化状态,对电机轴承退化特征提取方法进行研究,分别计算其在不同尺度下的复杂度度量能量熵、奇异谱熵和边际谱熵,以其作为退化特征向量。

        文献[13]针对航天器力学试验振动台水平滑台内部轴承无法观测、故障发生初期无法获知的问题,提出将嵌入式加速度状态监测方法作为一种有效的评估手段,通过选取加速度传感器作为轴承运动状态响应监测介质,以螺接方式安装于轴承上,使用变分模态分解技术作为轴承加速度响应数据分析方法计算每个轴承除基波外的谐波成分,以该结果构建的轴承状态指标,直观的判读出轴承故障。

        文献[14]针对滚动轴承的故障特诊提取与识别,提出以多尺度排列熵作为特征向量和构建粒子群算法优化的概率神经网络故障诊断模型,通过计算各个IMF的多尺度排列熵,组成多尺度的特征向量输入粒子群算法优化的概率神经网络故障诊断模型中识别故障类型。

        文献[15]针对在滚动轴承早期故障阶段代表轴承故障特征的冲击成分容易被较强的背景噪声淹没的问题,提出利用以相关峭度为适应度函数的蝗虫优化算法对VMD参数进行自适应选定的方法,以相关峭度为指标,挑选具有最大相关峭度指标的模态分量进行包络解调分析,实现故障特征提取。

        文献[16]针对滚动轴承早期故障信号易受噪声等背景信息干扰难于提取故障特征的现象,通过加权峭度指标(EWK)指标选取有效成分,对选定模态分量进行最大相关峭度解卷积(MCKD)增强,用粒子群算法优化FIR滤波器的长度和位移两个参数,最后将增强信号进行包络解调,观察有无故障特征频率,达到故障诊断的目的。

        文献[17]针对滚动轴承早期故障识别较困难的问题,提出基于VMD和马氏距离SVM的滚动轴承故障诊断方法,通过采用小波软阈值法对原始振动信号进行去噪处理以及从VMD分解后的IMF中提取能量特征,最后将特征导入基于马氏距离的高斯函数核的SVM进行故障的识别分类。

        文献[18]针对风机滚动轴承微弱故障信号所具有的非线性和非平稳特征及易被强背景噪声掩盖的问题,提出了PSO-VMD-MCKD方法,采用粒子群优化算法(PSO)优化VMD算法中的参数分解后选取最优模态分量,再利用PSO优化最大相关峭度解卷积(MCKD)算法加强最优分量信号中的故障冲击成分,最后通过包络谱提取出轴承微弱故障特征。

        文献[19]针对滚动轴承运转信号单一特征参数对早期故障的敏感性、可靠性问题,通过VMD分解得到IMF并计算其相应的特征集和构造特征参数向量,然后构造基准空间并计算故障信号的马氏距离,比较马氏距离的信噪比大小以确定最优特征变量,基于最优特征变量重构马氏基准空间,最后通过计算待诊断轴承信号的马氏距离,实现滚动轴承的故障诊断。

        上述文献主要是将VMD方法应用在轴承故障诊断中,并且取得良好的应用效果。本文可供故障诊断的初学者参考学习。

参考文献

[1] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.

[2] 郑圆,胡建中,贾民平,许飞云,童清俊. 一种基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击,2020,39(21):195-202.

[3] 许子非,岳敏楠,李春. 优化递归变分模态分解及其在非线性信号处理中的应用[J]. 物理学报,2019,68(23):292-305.

[4] 方桂花,杜壮,高旭. 香农熵改进的变分模态分解与故障特征提取[J]. 机械科学与技术,2020,39(07):1022-1027.

[5] 李江,李春,许子非,金江涛. 旋转机械状态非线性特征提取及状态分类[J]. 电子测量与仪器学报,2020,34(05):65-74.

[6] 周易文,瞿家明,王恒,倪广县. 改进自适应形态学滤波的滚动轴承故障检测[J]. 控制工程,2020,27(11):1975-1979.

[7] 孟宗,岳建辉,邢婷婷,李晶,殷娜. 基于最大幅值变分模态分解和均方根熵的滚动轴承故障诊断[J]. 计量学报,2020,41(04):455-460.

[8] 谷然,陈捷,洪荣晶,潘裕斌,李媛媛. 基于改进自适应变分模态分解的滚动轴承微弱故障诊断[J]. 振动与冲击,2020,39(08):1-7+22.

[9] 殷红,陈强,彭珍瑞. 传感器优化布置的齿轮箱轴承故障特征提取[J]. 噪声与振动控制,2020,40(04):67-72+154.

[10] 王琇峰,文俊. 基于噪声信号和改进VMD的滚动轴承故障诊断[J]. 噪声与振动控制,2021,41(02):118-124.

[11] 张淑清,陈荣飞,张立国,姚家琛,穆勇,刘勇,黄毅臣. 基于多尺度高阶奇异谱熵的信号特征提取方法[J]. 计量学报,2019,40(05):848-854.

[12] 段永彬,张玉芝,安建良,张前图. 基于变分模态分解谱熵的电机轴承退化状态识别方法[J]. 机械设计与研究,2019,35(04):101-104.

[13] 杜晓舟,信奇,高海洋,朱子宏. 基于变分模态分解的振动台轴承状态监测方法[J]. 强度与环境,2019,46(05):59-64.

[14] 张建财,高军伟. 基于变分模态分解和多尺度排列熵的滚动轴承故障诊断[J]. 噪声与振动控制,2019,39(06):181-186.

[15] 郑义,岳建海,焦静,郭鑫源. 基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击,2021,40(01):86-94.

[16] 王新刚,王超,韩凯忠. 基于优化VMD和MCKD的滚动轴承早期故障诊断方法[J]. 东北大学学报(自然科学版),2021,42(03):373-380+388.

[17] 乔美英,刘宇翔,兰建义. 基于VMD和马氏距离SVM的滚动轴承故障诊断[J]. 中山大学学报(自然科学版),2019,58(05):8-16.

[18] 张俊,张建群,钟敏,郑近德,李习科. 基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断[J]. 振动.测试与诊断,2020,40(02):287-296+418.

[19] 陈剑,庄学凯,吕伍佯,陶善勇,王维. 基于IVMD和马田系统的滚动轴承故障检测方法[J]. 计量学报,2019,40(06):1083-1087.

  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不是哆啦A梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值