在机械设备运转时,由于部件之间的摩擦力、撞击力或平衡力等因素使机械部件产生振动进而产生声音(又称为机械噪声),这些噪声中往往带有大量设备运行状态的信息。声音信号具有丰富的信息量,在很多视觉、触觉、嗅觉不合适的场合下,具有独特的优势,声音信号通常被认为与振动信号具有较大的相关性,由于声音的非接触性,不需要对传感器进行粘贴和接触到待测机器,避免了振动信号采集数据的困难,更重要的是不影响设备正常工作,且具有速度快、效率高等优势。
文献[1]针对环境背景噪声下,声目标的识别率大大降低的问题,提出了一种基于改进的MFCC特征参数提取方法,小波变化用来替代MFCC参数提取过程中的快速傅里叶变换,结合矢量量化识别的方法在不同的噪声比情况下来检测和识别目标声信号。实验结果表明,改进的MFCC特征参数在单一的噪声环境下的识别率优于MFCC特征参数,更准确的分辨出不同的声目标信号。
文献[2]针对墙体空鼓声无损检测信号中时频特征的不稳定性,传统的频谱特征和人工神经网络模式识别方法需要大量训练样本且识别性能有限等问题。利用敲击墙体声信号的人耳听觉特性,提出利用信号Mel频率倒谱系数(MFCC)特征和动态时间规整(DTW)模板匹配的方法进行分类识别。实验结果表明,仅需少量训练样本的条件下检测识别率达到90%以上。
文献[3]针对电机声信号的统计特性及其人工质检的特点,利用声传感器技术代替人耳实现对电机声音信号的采集。为了突出特征差异的绝对化,采用主成分分析方法对电机的声信号进行数据压缩、维数来实现电机声信号提取特征,利用小波包分解和以归一化能量构建特征矩阵,最终输入支持向量机实现对异音电机的检测。
文献[4]针对气固流化床聚合反应生产聚乙烯过程中的结块故障,提出了一种基于多个声波传感器信息融合的故障诊断方法。该方法以低频可听声波为检测手段,用多路声波传感器监听流化床的不易结块位置,以结块撞击器壁的冲击振动信号为主要结块判别依据。随后提取声波信号的特征,基于特征矩阵建立了故障诊断模型,将多个模型的输出进行决策融合,消除了多传感器之间相互冲突的不确定性。
文献[5]主要概述了轴承故障的产生机理,从振动和噪声两种不同性质的信号对轴承研究分析对不同故障形式进行了总结。基于局部均值分解的波形分析和结合支持向量机对故障轴承进行简单的诊断,因非接触式检测带来的采集优势,基于声学特性的机械检测技术将拥有更大的应用发展前景。
文献[6]分析声音信号具有丰富的信息量,在很多视觉、触觉、嗅觉不合适的场合下,具有独特的优势,声音信号通常被认为与振动信号具有较大的相关性,但是声音的非接触性,避免了振动信号采集数据的困难。
文献[7]探究如何有效利用声信号进行故障诊断,结合传统算法与深度学习算法,开展了基于声信号的故障提取与只智能识别方法研究。针对传统模态分解方法自适应差的不足,提出了基于CEEMDAN与解卷积算法的声信号特征提取方法;针对单尺寸卷积神经网络感受野较窄的特点,构建基于TextCNN的故障识别模型,实现了故障的智能诊断;针对将一维信号转换为二维数据特征图时,易破坏一维时序序列特征,发展了基于LSTM-FCN网络的故障识别方法。

文献[8]分析在当前工业领域,机械设备结构日益精细、复杂,设备功能增强的同时也伴随着故障诊断难度的提高,工程机械在具体的使用过程中会受到振动、高低温以及粉尘等各种外界因素的影响,所以发生机械故障的频率也就相对比较频繁,这种问题会给社会和企业带来较大经济损失。
文献[9-11]分析机械振动现象虽然普遍,但很难用感官感受,只有用现代仪器测量,对设备状态进行检测和诊断,才能揭示振动信号所包含的信息,振动数据可有效反映机器状态,且对设备状态变化敏感,在当前故障诊断领域中,使用振动信号进行故障诊断已被成熟应用。
文献[12]针对列车轴承轨边声信号多普勒畸变的特点,结合运用短时傅里叶变换和卷积神经网络,研究列车在不同车速下轨边声学故障诊断方法。研究了基于STFT的列车轴承轨边声信号图片集制作方法,并针对信号特点基于改进的Lenet5网络的列车轴承轨边声学诊断方法。为了提升Lenet5网络的泛化能力,提出了一种基于重采样技术的训练样本扩充方法。
文献[13]针对滚动轴承故障诊断中单一网络模型的不确定问题和考虑到声信号非接触式测量的优势,提出一种多卷积神经网络(CNN)模型融合的滚动轴承声学故障诊断方法。首先采用多通道传声器信号对每个CNN进行训练,然后采用Blending模型融合方法将多CNN模型进行融合,最后通过消声室内滚动轴承试验台的传声器数据对该方法的有效性进行实验验证。结果证明,该方法可以避免复杂的人工特征提取过程,通过模型融合能够获得更高的诊断精度,并在一定程度上可以克服声学诊断中不易选择传声器测点位置的问题。
此外,文献[13]分析基于振动信号的测量和分析由于其信息丰富、物理意义明确、易于识别和决策,已成为最常用和有效的方法之一。然而,在很多实际情况下,一方面由于设备或工作环境的限制,振动传感器的安装不方便;另一方面,在高温、高湿、高腐蚀和有毒的环境中,振动信号不易测量,这限制了振动诊断方法。
文献[14]针对强背景噪声下滚动轴承故障诊断问题,提出一种结合互补集合经验模态分解(CEEMD)与鲸鱼优化算法最小二乘支持向量机(WOA_LSSVM)的诊断方法。首先对声信号进行快速峭度分析并进行带通滤波预处理,提取故障冲击成分;其次,利用CEEMD算法将滤波信号进行分解运算,得到一系列的模态分量(IMF);再利用相关函数法选取有效IMF分量进行信号重构;再提取重构信号的近似熵、峭度、峰峰值、峰值因子、波形因子作为特征值组特征向量;最后将归一化的特征向量输入WOA_LSSVM进行故障类别识别。实验结果验证该方法的有效性,提高了故障诊断的准确率。
文献[15]分析异步电机运行声音包含着许多重要信息,对声学特征有效提取可用于故障检测,提出一种基于可听声信号的异步电机故障诊断方法。利用Gammatone滤波器队医种正常工况和两种异常工况的声音信号提取了GFCC特征向量;最后采用卷积神经网络对可视化后的特征量进行分类识别。实验结果表明,相较于梅尔滤波器提取的两种特征量,GFCC具有更高的目标识别率。
文献[16]针对滚动轴承故障诊断中声信号信噪比比较低、特征提取困难的问题,提出了一种多重降噪轴承故障特征提取方法。首先用最小熵解卷积对故障轴承声信号进行预处理来提高信噪比;然后利用局部特征尺度分解将处理后的信号分解为多个内禀尺度分量,进一步利用相关系数-峭度值原则,筛选出最佳内禀尺度分量进行重构;最后通过1.5维Teager能谱提取轴承故障特征。实验结果表明,该方法可以在信噪比极低的情况下有效提取故障特征。
文献[17]针对滚动轴承故障声信号在故障诊断中共振解调滤波参数较难确定以及故障诊断困难的问题,提出一种基于经验模态分解和排列熵的改进滚动轴承故障诊断解调方法。首先对滚动轴承声信号进行经验模态分解;然后计算各本征模态分量的排列熵值和相关系数,根据联合系数最大化原则对筛选出的分量进行信号重构;最后利用快速谱峭度对重构信号进行滤波分析,将峭度值的频段进行平方包络提取特征频率。实验结果表明该方法能够有效提取轴承故障特征,并且相较于传统的包络解调具有更好的效果。
文献[18]针对滚动轴承故障信号的强背景噪声特点,提出一种基于谱峭度和互补集合经验模态分解(CEEMD)的故障特征提取方法。首先对滚动轴承声信号进行快速谱峭度计算并进行带通滤波预处理;然后利用CEEMD将滤波信号进行分解运算,得到一系列本征模态(IMF)分量;再利用相关系数法和时域特征指标峰值因子选取包含故障信息最丰富的IMF分量;最后用Hilbert算法包络解调分析选取的IMF分量,得到清晰的故障特征频率。
文献[19]提出基于声信号的故障检测可以通过非接触式的传感器采集部件工作的声音信号,经过处理后可以有效的表征部件的工作状态。声信号开始用于火箭发动机和其他零部件的故障检测,并取得一些研究成果。
文献[20]提出了一种基于声信号听觉谱特征和支持向量机的变压器绕组松动识别方法。首先,将采集的声信号进行去均值和消除趋势项的预处理,以减小信号采集环境和传感器性能对所采集信号的影响;然后,将预处理后的声信号输入到多特征频率分析的听觉外周模型,经过中耳滤波器滤波、基底膜模型选频、外毛细胞模型放大、内毛细胞模型换能作用后,输出内毛细胞电压信号,实现多个特征频率听觉信号的提取,以此构成听觉谱,并在听觉谱基础上提取多种统计特征;最后,每种特征分别使用遗传算法优化的支持向量机进行识别试验,以验证提取特征的有效性。为进一步提高识别准确率,融合多种统计特征构成特征向量并进行测试,以此确定最优融合特征。研究表明,该文所建立的变压器绕组状态检测方法可以有效地应用于变压器故障诊断和监测中。
文献[21]分析异步电机运行声音包含着许多重要的信息,对声学特征有效提取可用于故障诊断。提出一种基于可听声信号的异步电机故障诊断方法,以异步电机为实验对象,利用Gammatone滤波器对一种正常工况和两种异常工况的声音信号提取了GFCC特征向量,最后采用卷积神经网络对可视化后的特征量进行分类识别。实验结果表明,相较于梅尔滤波器提取的两种特征量,GFCC具有更高的目标识别率。
参考文献
[1] 刘贞, 石振刚, 胡玉兰,等. 基于改进的WMFCC在声目标识别中的应用[J]. 科技创新导报, 2018, 15(14):2.
[2] 曾堃, 陈东升, 童峰,等. 采用MFCC和DTW算法的声无损检测信号听觉分类[C]// 第十二届全国人机语音通讯学术会议(NCMMSC'2013)论文集. 2013.
[3] 刘力源. 基于机器学习方法的电机异音检测研究[D].五邑大学,2014.
[4] 陈瑜. 基于SVDD和多传感器信息融合的流化床结块故障检测[D]. 北京化工大学.
[5] 王英龙. 基于局域均值分解和支持向量机的滚动轴承故障诊断[D]. 宁夏大学.
[6] 李伟, 李硕. 理解数字声音——基于一般音频/环境声的计算机听觉综述[J]. 复旦学报:自然科学版, 2019, 58(3):45.
[7] 申博文. 基于声信号的滚动轴承特征提取与智能识别方法研究[D].北京化工大学,2020.
[8] 曾莉,吴晨. 工程机械智能故障诊断技术的研究现状及发展趋势分析[J]. 现代制造技术与装备, 2020, 56(11):2.
[9] 张琪烨. 机械设备状态监测与故障智能化诊断技术分析[J]. 内燃机与配件,2019,(19):200-201.
[10] 许立学. 设备管理中的机械故障诊断技术与状态监测维修[J]. 中山大学学报(自然科学版),2005,(12):185-188.
[11] 沈庆根,郑水英. 设备故障诊断[M]. 北京:化学工业出版社,2006.
[12] 陈婧. 基于STFT与改进的LENET5网络的列车轴承轨边声学诊断研究[D].安徽大学,2020.
[13] 余龙靖,王冉,刘丰恺. 基于Blending多卷积神经网络模型融合的滚动轴承声学故障诊断方法[J]. 失效分析与预防,2021,16(04):238-245.
[14] 孙萧,黄民,马超. 基于CEEMD和WOA_LSSVM滚动轴承声信号故障诊断[J]. 组合机床与自动化加工技术,2021,(02):52-56+61.
[15] 杜京义,杨宁,荣相. 基于Gammatone倒谱系数的异步电机故障诊断方法研究[J]. 机床与液压,:1-9.
[16] 王涛,胡定玉,廖爱华,师蔚,丁亚琦,陶涛. 基于多重降噪的滚动轴承声信号故障特征提取[J]. 噪声与振动控制,2021,41(03):95-100+119.
[17] 王涛,胡定玉,丁亚琦,廖爱华,师蔚. 基于经验模式分解和排列熵的轴承故障特征提取[J]. 噪声与振动控制,2021,41(01):77-81.
[18] 孙萧,黄民,马超. 基于谱峭度和CEEMD的滚动轴承声信号故障诊断研究[J]. 现代制造工程,2021,(01):121-129.
[19] 刘育玮,张航,张振臻,杨述明,程玉强. 基于声信号的故障检测方法在运载火箭上的应用[J]. 火箭推进,2021,47(03):1-7.
[20] 王磊磊,张嵩阳,王枭,张光明,王广周,王东晖. 基于听觉谱特征的变压器绕组状态检测研究[J]. 应用声学,:1-11.
[21] 杜京义,杨宁,荣相. 基于Gammatone倒谱系数的异步电机故障诊断方法研究[J]. 机床与液压,:1-9.