一、6225个特征
图1所示内容为部分提取特征的属性值。

二、相关特征说明
表1-1 16个低级描述符(LLDs)的名称
序号 | 名称 | 描述 |
---|---|---|
1 | pcm_RMSenergy | 信号帧均方根能量 |
2 | mfcc | 梅尔频率倒谱系数1-12 |
3 | Pcm_zcr | 时间信号的过零率(基于帧) |
4 | voiceProb | 从ACF计算的发声概率 |
5 | F0 | 从倒谱计算的基频 |
附加到低级描述符名称的后缀_sma表示它们是通过窗口长度为3的移动平均滤波器进行平滑。附加到sma的后缀_de表示当前特征是低级描述符平滑后的一阶delta系数(微分)。
表1-2
序号 | 名称 | 描述 |
---|---|---|
1 | max | 轮廓的最大值 |
2 | min | 轮廓的最小值 |
3 | range | max- min |
4 | maxPos | 最大值的绝对位置(以帧为单位) |
5 | minPos | 最小值的绝对位置(以帧为单位) |
6 | amean | 轮廓的算术平均值 |
7 | linregc1 | 轮廓线性逼近的斜率(m) |
8 | linregc2 | 轮廓线性逼近的偏移量(t) |
9 | linregerrQ | 计算的二次误差作为线性近似值和实际轮廓的差值 |
10 | stddev | 轮廓上的值的标准偏差 |
11 | skewness | 偏度(3阶矩) |
12 | kurtosis | 峰度(4阶矩) |
13 | percentile1.0 | 轮廓的离群值鲁棒最小值,按1%百分位数表示 |
14 | percentile99.0 | 轮廓的离群值鲁棒最大值,按99%百分位数表示 |
15 | pctlrange0-1 | 由1%和99%的百分点的范围表示的离群值鲁棒信号范围“max-min” |
16 | upleveltime75 | 信号超过(75%*范围+min)的时间百分比 |
17 | upleveltime90 | 信号超过(90%*范围+min)的时间百分比 |
注:举例说明特征如何组成?
例1:该集包含的1582个特征是由34个低级描述符(LLDs)和34个相应的delta作为68个LLDs轮廓值,在此基础上应用21个函数得到1428个特征,另外,对4个基于音高的LLD及其4个delta系数应用了19个函数得到152个特征,最后附加音高(伪音节)的数量和总数输入的持续时间(2个特征)。
例2:该集包含的4368个特征是由4个能量相关+50个频谱相关的低级描述符(LLDs)和54个相应的delta作为108个LLDs,在此基础上应用33个基本函数+平均值、最小值、最大值、标准差得到3996个特征;5个声音相关和5个对应的delta作为10个LLDs,在此基础上应用33个基本函数+二次平均、上升时长、下降时长得到360个特征;6个F0基本函数和对应的delta,12个特征。