线性回归模型也并不适用于所有情况,有些结果可能包含而元数据(比如正面与反面)或者计数数据,广义线性模型可用于解释这类数据,使用的仍然是自变量的线性组合。
目录
逻辑回归
当响应变量为二元数据时,常用逻辑回归对数据进行建模。
以下数据来源于pandas活用所提供的数据,如需要可在此下载https://download.csdn.net/download/qq_57099024/79301082
import pandas as pd
d=pd.read_csv('D:/pandas活用/pandas_for_everyone-master/data/acs_ny.csv')
print(d.columns)
print('@'*66)#输出特殊符号以区分两次输出
print(d.head())
'''以下为输出结果:
Index(['Acres', 'FamilyIncome', 'FamilyType', 'NumBedrooms', 'NumChildren',
'NumPeople', 'NumRooms', 'NumUnits', 'NumVehicles', 'NumWorkers',
'OwnRent', 'YearBuilt', 'HouseCosts', 'ElectricBill', 'FoodStamp',
'HeatingFuel', 'Insurance', 'Language'],
dtype='object')
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Acres FamilyIncome FamilyType NumBedrooms NumChildren NumPeople \
0 1-10 150 Married 4 1 3
1 1-10 180 Female Head 3 2 4
2 1-10 280 Female Head 4 0 2
3 1-10 330 Female Head 2 1 2
4 1-10 330 Male Head 3 1 2
NumRooms NumUnits NumVehicles NumWorkers OwnRent YearBuilt \
0 9 Single detached 1 0 Mortgage 1950-1959
1 6 Single detached 2 0 Rented Before 1939
2 8 Single detached 3 1 Mortgage 2000-2004
3 4 Single detached 1 0 Rented 1950-1959
4 5 Single attached 1 0 Mortgage Before 1939
HouseCosts ElectricBill FoodStamp HeatingFuel Insurance Language
0 1800 90 No Gas 2500 English
1 850 90 No Oil 0 English
2 2600 260