广义线性模型(逻辑回归、泊松回归)

使用statsmodels和sklearn进行逻辑回归与计数数据分析

线性回归模型也并不适用于所有情况,有些结果可能包含而元数据(比如正面与反面)或者计数数据,广义线性模型可用于解释这类数据,使用的仍然是自变量的线性组合。

目录

逻辑回归

使用statsmodels

 使用sklearn

泊松回归 

使用statsmodels

负二项回归


逻辑回归

当响应变量为二元数据时,常用逻辑回归对数据进行建模。

以下数据来源于pandas活用所提供的数据,如需要可在此下载https://download.csdn.net/download/qq_57099024/79301082

import pandas as pd
d=pd.read_csv('D:/pandas活用/pandas_for_everyone-master/data/acs_ny.csv')
print(d.columns)
print('@'*66)#输出特殊符号以区分两次输出
print(d.head())


'''以下为输出结果:
Index(['Acres', 'FamilyIncome', 'FamilyType', 'NumBedrooms', 'NumChildren',
       'NumPeople', 'NumRooms', 'NumUnits', 'NumVehicles', 'NumWorkers',
       'OwnRent', 'YearBuilt', 'HouseCosts', 'ElectricBill', 'FoodStamp',
       'HeatingFuel', 'Insurance', 'Language'],
      dtype='object')
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
  Acres  FamilyIncome   FamilyType  NumBedrooms  NumChildren  NumPeople  \
0  1-10           150      Married            4            1          3   
1  1-10           180  Female Head            3            2          4   
2  1-10           280  Female Head            4            0          2   
3  1-10           330  Female Head            2            1          2   
4  1-10           330    Male Head            3            1          2   

   NumRooms         NumUnits  NumVehicles  NumWorkers   OwnRent    YearBuilt  \
0         9  Single detached            1           0  Mortgage    1950-1959   
1         6  Single detached            2           0    Rented  Before 1939   
2         8  Single detached            3           1  Mortgage    2000-2004   
3         4  Single detached            1           0    Rented    1950-1959   
4         5  Single attached            1           0  Mortgage  Before 1939   

   HouseCosts  ElectricBill FoodStamp HeatingFuel  Insurance        Language  
0        1800            90        No         Gas       2500         English  
1         850            90        No         Oil          0         English  
2        2600           260   
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱打羽毛球的小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值