pyecharts与matplotlib在使用时的区别和优缺点对比

目录

简介

pyecharts(以下简介来源于官网)

Matplotlib(个人总结)

认知

举例


简介

pyecharts(以下简介来源于官网)

echarts是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

  • 简洁的 API 设计,使用如丝滑般流畅,支持链式调用
  • 囊括了 30+ 种常见图表,应有尽有
  • 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab
  • 可轻松集成至 Flask,Django 等主流 Web 框架
  • 高度灵活的配置项,可轻松搭配出精美的图表
  • 详细的文档和示例,帮助开发者更快的上手项目
  • 多达 400+ 地图文件以及原生的百度地图,为地理数据可视化提供强有力的支持

Matplotlib(个人总结)

Matplotlib是一个Python 2D绘图库,Matplotlib 尝试使容易的事情变得更容易,使困难的事情变得可能。 您只需几行代码就可以生成图表、直方图、功率谱、条形图、误差图、散点图等。

  • 使用起来更加简单
  • 使用稳定

认知

对于matplotlib,个人感觉更适合用于简单图像的绘制,是那种静态的,方便看,但是并没有pyecharts那么吸引眼球,另外就是相当稳定,各种图像、颜色都可以进行绘制。因此我个人认为matplotlib更适合适用于简单不追求高品质的图像的绘制,如果需要大屏的展示,或许echarts和pyecharts是更好的选择,看起来更加丰富多彩。

举例

就拿下面两个相同数据分别通过pyecharts和matplotlib来说,pyecharts绘制的3d图能画出来,但是同一类型的实验的十次实验数据的坐标点的颜色只能是一样的,pyecharts好像不支持设定颜色,所以我换了matplotlib绘制了一个3d图像,但是matplotlib的缺点就是不能旋转,不能调整视角,而且matplotlib的图像看起来缺乏对观看者视觉的冲击感。pyecharts的好处就是颜色虽然一样,但是可以通过上面的第几次实验坐标来控制是否显示第几次的实验坐标,但是因为颜色无法单独设定所以没法一眼看出两次实验的坐标。

<think>嗯,用户想在同一个坐标系里同画条形图其他图表,比如折线图或散点图。我记得之前学过的Python库,比如MatplotlibPyecharts,应该可以做到。首先得回顾一下这两个库的使用方法。 先看MatplotlibMatplotlib里通常用subplots来创建图表,然后在一个axes上叠加不同的图表类型。比如,可以先画一个条形图,然后在同一个axes上画折线图或者散点图。不过要注意的是,可能需要调整第二个y轴,特别是当两个数据系列的数值范围差异较大。比如,如果条形图的数据是诊疗量,单位是万,而折线图是百分比增速,这候可能需要右边的y轴来显示百分比,左边显示数量。这候可以用twinx()来创建第二个y轴,这样两个图表可以共享同一个x轴,但各自有不同的y轴刻度。 然后想到Pyecharts,这个库是基于Echarts的,支持更多的交互功能。在Pyecharts中,可以通过将柱形图(Bar)折线图(Line)添加到同一个实例中来实现融合。例如,先创建一个Bar实例,然后创建一个Line实例,使用overlap方法将两者叠加到同一个坐标系里。同,还需要确保两者的x轴数据一致,这样才能对齐。另外,可能需要设置不同的颜色标签来区分两种图表类型,避免混淆。 用户可能的需求是数据可视化,需要同展示两种不同类型的数据趋势,比如某个机构每年的诊疗量同比增长率。这候条形图适合显示绝对数值,折线图适合显示变化趋势。需要注意数据对齐的问题,确保x轴的标签对应正确,否则图表会出现错位的情况。 另外,用户可能对代码的具体实现步骤不太清楚,比如如何在一个图中组合不同的图表类型。需要分步骤说明,比如准备数据、创建图表对象、添加数据系列、调整坐标轴样式等。同,应该提供示例代码,让用户可以直接参考修改。 可能遇到的问题包括:数据格式是否正确,颜色样式的调整,坐标轴的标签设置,图例的位置等。需要提醒用户检查数据是否匹配,确保x轴的数据类型一致,比如都是年份或者类别名称。另外,如果使用双y轴,需要明确标注左右两边的单位,避免误解。 还要考虑不同库的优缺点Matplotlib适合静态图,Pyecharts适合交互式网页图表。用户可能有不同的使用场景,比如报告中的静态图或网页中的动态展示。因此,可能需要分别介绍两种方法,让用户根据需求选择。 最后,需要验证一下示例代码是否正确。比如Matplotlib使用twinx(),是否正确关联了ax1ax2,颜色设置是否区分了左右y轴标签。Pyecharts中的overlap方法是否正确叠加了柱形图折线图,数据是否按正确格式传入。 总结来说,回答应该包括两种主要方法:MatplotlibPyecharts的实现步骤,各自的优缺点,示例代码以及注意事项。同,要确保引用相关的参考资料,比如用户提供的引用[2][3]关于Pyecharts的方法,以及引用[4]提到的Matplotlib设置颜色的问题。这样用户可以根据自己的项目需求选择合适的方法,并顺利实现图表的融合。</think>### 如何在同一坐标系中绘制条形图其他图表? 在同一坐标系中同绘制条形图折线图或散点图,主要通过**共享坐标轴****分层叠加**实现。以下是两种常用方法的具体步骤: --- #### **方法一:使用 Matplotlib(适合静态图)** 1. **准备数据** 假设需绘制年份对应的诊疗量(条形图)同比增速(折线图): ```python years = [2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021] visits = [87430, 90912, 96225, 101885, 107147, 116390, 105764, 120215] growth_rate = [7.40, 24.00, 5.83, 5.81, 5.16, 8.63, -9.13, 13.66] ``` 2. **创建画布坐标轴** 使用 `subplots` 创建主坐标轴,并通过 `twinx()` 添加第二纵轴: ```python import matplotlib.pyplot as plt fig, ax1 = plt.subplots(figsize=(10, 6)) ax2 = ax1.twinx() # 共享同一横轴 ``` 3. **绘制条形图折线图** 在 `ax1` 上绘制条形图,在 `ax2` 上绘制折线图: ```python # 条形图(诊疗量) ax1.bar(years, visits, color='skyblue', label='诊疗量(万人次)') ax1.set_xlabel('年份') ax1.set_ylabel('诊疗量', color='skyblue') # 折线图(同比增速) ax2.plot(years, growth_rate, color='orange', marker='o', label='同比增速(%)') ax2.set_ylabel('增速', color='orange') ``` 4. **设置样式图例** 合并图例并调整颜色: ```python lines, labels = ax1.get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax1.legend(lines + lines2, labels + labels2, loc='upper left') plt.title('诊疗量增速对比') plt.show() ``` **关键点**:通过 `twinx()` 实现双纵轴,避免数据范围差异导致的图表变形[^4]。 --- #### **方法二:使用 Pyecharts(适合交互式图表)** 1. **导入类并准备数据** ```python from pyecharts.charts import Bar, Line from pyecharts import options as opts # 数据Matplotlib示例相同 ``` 2. **创建柱形图实例** ```python bar = Bar() bar.add_xaxis(years) bar.add_yaxis("诊疗量(万人次)", visits, yaxis_index=0) ``` 3. **创建折线图实例并叠加** 使用 `overlap()` 合并图表: ```python line = Line() line.add_xaxis(years) line.add_yaxis("同比增速(%)", growth_rate, yaxis_index=1) # 合并图表 bar.overlap(line) ``` 4. **设置全局配置项** 调整双纵轴样式: ```python bar.set_global_opts( title_opts=opts.TitleOpts(title="诊疗量增速对比"), yaxis_opts=opts.AxisOpts(name="诊疗量", position="left"), datazoom_opts=opts.DataZoomOpts(), # 添加缩放功能 ).extend_axis( yaxis=opts.AxisOpts(name="增速", position="right") ) bar.render("combined_chart.html") # 生成HTML文件 ``` **优势**:Pyecharts支持交互式缩放动态数据展示[^2][^3]。 --- ### **注意事项** 1. **数据对齐**:确保条形图折线图的横轴标签严格对应。 2. **颜色区分**:不同图表类型使用对比色,避免混淆。 3. **坐标轴标注**:双纵轴需明确标注单位含义。 --- ### 相关问题 1. 如何调整双纵轴的刻度范围以避免数据重叠? 2. Pyecharts中如何自定义折线图的标记样式? 3. Matplotlib中如何在同一图中添加散点图条形图?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱打羽毛球的小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值