详细内容请参考:【神经网络】(15) Xception 代码复现,网络解析,附Tensorflow完整代码_xception代码-CSDN博客
Xception的原始论文《Xception: Deep Learning with Depthwise Separable Convolutions》
Xception是一种深度卷积神经网络架构,由Google提出,是Inception V3的一种改进版本。该模型的主要创新点在于采用深度可分离卷积(Depthwise Separable Convolution)来替换原来Inception V3中的多尺寸卷积核特征响应操作。
一、设计理念
Xception的设计理念基于Inception模块,但进行了进一步的优化和简化。Inception模块通过多尺寸卷积核来观察输入数据,以提高对不同尺度特征的适应能力。然而,这种方法虽然提高了模型的精度,但也增加了计算复杂度和参数量。为了解决这个问题,Xception采用了深度可分离卷积,将跨通道相关性和空间相关性的处理分离,从而减少了参数量和计算量。
二、网络结构
Xception网络结构包含36个卷积层,这些卷积层被组织成14个模块,每个模块内部都采用了深度可分离卷积。这些模块被进一步划分为三个流程(Entry flow、Middle flow、Exit flow),其中Entry flow包含4个模块,Middle flow包含8个模块&