在Carla上应用深度强化学习实现自动驾驶(一)

carla环境下基于强化学习的自动驾驶_哔哩哔哩_bilibili

本篇文章是小编在pycharm上自己手敲代码学习自动驾驶的第一篇文章,主要讲述如何在Carla中控制我们自己生成的汽车并且使用rgb摄像头传感器获取图像数据。

以下代码参考自:(如有侵权,请联系我将立即删除)使用 Carla 和 Python 的自动驾驶汽车第 2 部分 —— 控制汽车并获取传感器数据-CSDN博客

1、导入carla(其中的路径根据自己的实际情况修改)

import glob
import os
import sys

try:
    sys.path.append(glob.glob(
        r'D:\postgraduate\code\CARLA_0.9.14\WindowsNoEditor\PythonAPI\carla\dist\carla-0.9.14-py3.7-win-amd64.egg')[0])
except IndexError:
    pass

import carla

2、我们将立即处理的第一件事是演员列表,并在我们完成后清理它们

actor_list = []
try:


finally:

    print('destroying actors')
    for actor in actor_list:
        actor.destroy()
    print('done.')

在这里,我们将在 try/finally 中封装主要的大部分代码。我们将把所有的逻辑和actor创建放在try中,然后finally会为我们清理它。

3、接下来,回想一下我们在 Carla 中有 3 个主要“事物”:世界、蓝图和演员。首先,我们将连接到我们的服务器,获取世界,然后访问蓝图

actor_list = []
try:
    client = carla.Client('localhost', 2000)
    client.set_timeout(2.0)

    world = client.get_world()

    blueprint_library = world.get_blueprint_library()

4、有了蓝图之后,我们就可以选取某个点来生成我们的汽车,并且控制它


                
### 使用Carla进行强化学习实现自动驾驶仿真教程 #### 选择环境设置与安装依赖项 为了在Carla环境中实施基于深度强化学习自动驾驶模拟,首先需要配置合适的开发环境。这通常涉及下载并安装特定版本的Carla模拟器以及必要的Python库和其他工具[^2]。 #### 初始化车辆及其传感器装备 创建用于训练模型的基础场景至关重要。通过编写脚本初始化辆或多辆汽车,并为其装配RGB摄像头等感知设备来收集周围世界的视觉信息作为输入源给到后续处理模块。 #### 设计奖励机制定义目标函数 构建有效的奖惩体系对于指导算法优化行为模式非常关键。根据项目需求设定具体的目标——比如保持车道内行驶、跟随前车安全距离或是完成指定路径导航任务;同时针对不同驾驶表现给予相应分数反馈以促进良好决策形成过程[^1]。 #### 构建神经网络架构选取合适的学习策略 采用适当类型的深层结构(如卷积层组合循环单元)搭建预测控制器能够更好地理解复杂交通状况下的动态变化规律。此外还需挑选恰当的方法论框架来进行参数调整工作,例如DQN, PPO 或者 TRPO 等流行技术方案均适用于此类应用场景下探索最优解空间的任务。 ```python import gym from stable_baselines3 import DDPG env = gym.make('carla-v0') model = DDPG('MlpPolicy', env, verbose=1) model.learn(total_timesteps=10_000) obs = env.reset() for i in range(1000): action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值