论文《A Deep Q-Network Reinforcement Learning-Based Model for Autonomous Driving》
仿真平台:Carla
概要:
提出一个使用深度Q网络(DQN)和长短时记忆(LSTM)的端对端自动驾驶系统
本文的主要贡献:第一,一个ADV模型与一个新的观察系统包括RGB(红,绿色,蓝色)图像信息,从面向前方的摄像头,车辆速度,车辆角度相对于道路中心作为观察输入数据。输出包括转向、制动和加速值的组合。第二,LSTM-DQN模型,用于在城市环境中的模拟自动驾驶环境中学习特定的驾驶行为。
本文提出的ADS的结构如下图所示:
将网络部分放大如下:
相关算法介绍:
DQN算法:
主要步骤:1、使用缓冲器,所有以前的经验都存储在缓冲器重放中。2、下一个动作由Q函数的最大输出决定。3、损失函数是预测Q值的均方误差以及目标Q值。