深度强化学习之自动驾驶论文阅读(二)

论文《A Deep Q-Network Reinforcement Learning-Based Model for Autonomous Driving》

仿真平台:Carla

概要:

提出一个使用深度Q网络(DQN)和长短时记忆(LSTM)的端对端自动驾驶系统

本文的主要贡献:第一,一个ADV模型与一个新的观察系统包括RGB(红,绿色,蓝色)图像信息,从面向前方的摄像头,车辆速度,车辆角度相对于道路中心作为观察输入数据。输出包括转向、制动和加速值的组合。第二,LSTM-DQN模型,用于在城市环境中的模拟自动驾驶环境中学习特定的驾驶行为。

本文提出的ADS的结构如下图所示:

将网络部分放大如下:

相关算法介绍:

DQN算法:

主要步骤:1、使用缓冲器,所有以前的经验都存储在缓冲器重放中。2、下一个动作由Q函数的最大输出决定。3、损失函数是预测Q值的均方误差以及目标Q值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值