💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
【单自由度系统的谐波激励】在时域中研究单自由度系统强迫振动的某些数值方法实现研究
摘要
计算了谐和力激励下的阻尼单自由度(SDOF)系统的精确解。将其与Matlab内置函数ode 45、中心差分法、纽马克法和四阶龙格-库塔法提供的数值解进行比较。
函数RK4.m,使用四阶龙格-库塔法对阻尼系统的运动方程进行数值求解
函数Newmark.m,采用纽马克方法对阻尼系统的运动方程进行数值求解
CentDiff.m函数,采用中心差分法对阻尼系统的运动方程进行数值求解
📚2 运行结果
部分代码:
function [x,dx,ddx] = Newmark(F,M,K,C,dt,x0,v0,varargin)
% options: default values
p = inputParser();
p.CaseSensitive = false;
p.addOptional('alpha',1/12);
p.addOptional('beta',1/2);
p.parse(varargin{:});
% shorthen the variables name
alpha = p.Results.alpha ;
beta = p.Results.beta;
% initial acceleration
a0 = M\(F(1)-C.*v0-K.*x0);
N = numel(F);
ddx = [a0,zeros(1,N-1)];
dx = [v0,zeros(1,N-1)];
x = [x0,zeros(1,N-1)];
aDT2 = (alpha.*dt.^2);
aDT = (alpha.*dt);
A = (1./aDT2.*M+beta/aDT*C+K);
for ii=1:N-1,
B1 = F(ii+1)+M.*(1./aDT2*x(ii)+1./aDT*dx(ii)+(1/(2*alpha)-1)*ddx(ii));
B2 = C.*(beta/aDT*x(ii)+(beta/alpha-1).*dx(ii));
B3 = C.*((beta/alpha-2)*dt/2*ddx(ii));
x(ii+1) = A\(B1+B2+B3);
ddx(ii+1)= 1/aDT2.*(x(ii+1)-x(ii))-1/aDT.*dx(ii)-(1/(2*alpha)-1).*ddx(ii);
dx(ii+1)= dx(ii)+(1-beta).*dt*ddx(ii)+beta.*dt*ddx(ii+1);
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]王前信.单自由度系统阻尼强迫振动的矢量图解计算[J].土木工程学报, 1958(01):33-43.DOI:CNKI:SUN:TMGC.0.1958-01-002.
[2]王孝然,石家庄铁道大学机械工程学院,王孝然,等.单自由度系统强迫振动下Kelvin模型和Maxwell模型的比较[J].石家庄铁道大学学报:自然科学版, 2016, 29(3):6.DOI:10.13319/j.cnki.sjztddxxbzrb.2016.03.13.
[3]高国华,余国安,王启玮.单自由度系统的模糊强迫振动理论[J].应用力学学报, 1991, 8(3):5.DOI:CNKI:SUN:YYLX.0.1991-03-018.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取