鲁班猫5,RK3588开发环境搭建

1.开发环境需求

在PC端需要安装常用软件和库,比如pycharm、Python、交叉编译器等, 安装一些深度学习框架,比如Pytorch,TensorFlow,PaddlePaddle等等。 各种软件的使用,建议创建虚拟环境来隔离,常用Python 虚拟环境和Anaconda或者Miniconda。

在鲁班猫板卡上,系统使用Ubuntu或者debian,内核默认适配rknn驱动,其他rknn相关组件均包含,如果需要更新请参考后面具体教程。 还有一些常用的相关软件和库安装,例如python,cmake,make,gcc,opencv等等。

本文使用的系统是ubuntu20.04

2.Anaconda安装

因为网络原因,从清华大学开源镜像下载Anaconda3

下载完成后,运行.sh文件

按多次回车,直到出现这个界面

输入yes继续回车

到这一步回车以(/home/用户/Anaconda3)为安装路径,这里继续回车

安装完成后输入yes,初始化conda

安装完成,简单运行一下conda,测试是否安装成功

# 重启或者使用命令source ~/.bashrc进入anaconda环境
source ~/.bashrc

# 列出创建的虚拟环境
#conda env list
conda info --envs

安装成功

Anaconda配置使用国内镜像源(可选):

# 查看默认的源
conda config --show channels

# 使用清华源,也可以自行添加其他第三方源等等
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r

conda config --set custom_channels.auto https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/

conda config --set show_channel_urls yes

3.rknn-toolkit2安装

# 创建一个名为toolkit2_1.6的环境,并指定python版本,
conda create -n toolkit2_1.6 python=3.8
conda activate toolkit2_1.6

创建环境成功后,会安装缺失的依赖使用activate激活虚拟环境

conda activate toolkit2_1.6 

成功如图所示

然后拉取rknn-toolkit2的源码,无法访问的话可以找gitee上的镜像

# 拉取toolkit2源码
git clone https://github.com/airockchip/rknn-toolkit2

# gitee上的镜像
git clone https://gitee.com/polarbird/rknn-toolkit2.git

配置pip源,注意要用pip3 ,安装rknn-toolkit2的依赖

# 配置pip源
pip3 config set global.index-url https://repo.huaweicloud.com/repository/pypi/simple/

# pip安装指定版本的库(教程测试时toolkit2版本是1.6.0,请根据python版本选择文件安装)
cd rknn-toolkit2
pip3 install -r packages/requirements_cp38-1.6.0.txt

# 需要根据python版本和rknn_toolkit2版本选择whl文件,例如这里创建的是python3.8环境,使用带”cp38”的whl文件。
pip3 install packages/rknn_toolkit2-1.6.0+81f21f4d-cp38-cp38-linux_x86_64.whl

测试一下是否安装成功

4.yolov5安装

# 安装anaconda参考前面环境搭建教程,然后使用conda命令创建环境
conda create -n yolov5 python=3.9
conda activate yolov5

# 拉取最新的yolov5(教程测试时是v7.0),可以指定下版本分支
# git clone https://github.com/ultralytics/yolov5.git -b v7.0
git clone https://github.com/ultralytics/yolov5
cd yolov5

# 安装依赖库
pip3 install -r requirements.txt

 测试是否安装成功

import torch
import utils
display=utils.notebook_init()

安装成功

参考资料:

2. 开发环境介绍 — [野火]嵌入式AI应用开发实战指南—基于LubanCat-RK系列板卡 档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值