1.开发环境需求
在PC端需要安装常用软件和库,比如pycharm、Python、交叉编译器等, 安装一些深度学习框架,比如Pytorch,TensorFlow,PaddlePaddle等等。 各种软件的使用,建议创建虚拟环境来隔离,常用Python 虚拟环境和Anaconda或者Miniconda。
在鲁班猫板卡上,系统使用Ubuntu或者debian,内核默认适配rknn驱动,其他rknn相关组件均包含,如果需要更新请参考后面具体教程。 还有一些常用的相关软件和库安装,例如python,cmake,make,gcc,opencv等等。
本文使用的系统是ubuntu20.04
2.Anaconda安装
因为网络原因,从清华大学开源镜像下载Anaconda3
下载完成后,运行.sh文件
按多次回车,直到出现这个界面
输入yes继续回车
到这一步回车以(/home/用户/Anaconda3)为安装路径,这里继续回车
安装完成后输入yes,初始化conda
安装完成,简单运行一下conda,测试是否安装成功
# 重启或者使用命令source ~/.bashrc进入anaconda环境
source ~/.bashrc
# 列出创建的虚拟环境
#conda env list
conda info --envs
安装成功
Anaconda配置使用国内镜像源(可选):
# 查看默认的源
conda config --show channels
# 使用清华源,也可以自行添加其他第三方源等等
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --set custom_channels.auto https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/
conda config --set show_channel_urls yes
3.rknn-toolkit2安装
# 创建一个名为toolkit2_1.6的环境,并指定python版本,
conda create -n toolkit2_1.6 python=3.8
conda activate toolkit2_1.6
创建环境成功后,会安装缺失的依赖使用activate激活虚拟环境
conda activate toolkit2_1.6
成功如图所示
然后拉取rknn-toolkit2的源码,无法访问的话可以找gitee上的镜像
# 拉取toolkit2源码
git clone https://github.com/airockchip/rknn-toolkit2
# gitee上的镜像
git clone https://gitee.com/polarbird/rknn-toolkit2.git
配置pip源,注意要用pip3 ,安装rknn-toolkit2的依赖
# 配置pip源
pip3 config set global.index-url https://repo.huaweicloud.com/repository/pypi/simple/
# pip安装指定版本的库(教程测试时toolkit2版本是1.6.0,请根据python版本选择文件安装)
cd rknn-toolkit2
pip3 install -r packages/requirements_cp38-1.6.0.txt
# 需要根据python版本和rknn_toolkit2版本选择whl文件,例如这里创建的是python3.8环境,使用带”cp38”的whl文件。
pip3 install packages/rknn_toolkit2-1.6.0+81f21f4d-cp38-cp38-linux_x86_64.whl
测试一下是否安装成功
4.yolov5安装
# 安装anaconda参考前面环境搭建教程,然后使用conda命令创建环境
conda create -n yolov5 python=3.9
conda activate yolov5
# 拉取最新的yolov5(教程测试时是v7.0),可以指定下版本分支
# git clone https://github.com/ultralytics/yolov5.git -b v7.0
git clone https://github.com/ultralytics/yolov5
cd yolov5
# 安装依赖库
pip3 install -r requirements.txt
测试是否安装成功
import torch
import utils
display=utils.notebook_init()
安装成功
参考资料: