2.2 线性变换与线性空间

第二章 线性代数

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

2.2 线性变换与线性空间

  1. 线性组合

    β , α 1 , ⋯   , α m \boldsymbol\beta,\boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_m β,α1,,αm都是 n n n维向量,若存在一组实数 λ 1 , ⋯   , λ m \lambda_1,\cdots,\lambda_m λ1,,λm使得

    β = λ 1 α 1 + ⋯ + λ m α m \boldsymbol\beta=\lambda_1\boldsymbol\alpha_1+\cdots+\lambda_m\boldsymbol\alpha_m β=λ1α1++λmαm

    则称向量 β \boldsymbol\beta β可由 α 1 , ⋯   , α m \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_m α1,,αm线性表示,或称向量 β \boldsymbol\beta β是向量组 α 1 , ⋯   , α m \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_m α1,,αm的线性组合。

  2. 线性相关

    设有 n n n维向量组 α 1 , ⋯   , α m \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_m α1,,αm,若存在一组不全为零的实数 λ 1 , ⋯   , λ m \lambda_1,\cdots,\lambda_m λ1,,λm使得

    λ 1 α 1 + ⋯ + λ m α m = 0 \lambda_1\boldsymbol\alpha_1+\cdots+\lambda_m\boldsymbol\alpha_m=\boldsymbol{0} λ1α1++λmαm=0

    则称向量组 α 1 , ⋯   , α m \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_m α1,,αm线性相关;否则称它们线性无关

    线性相关的推论

    n n n n n n维向量 α 1 , ⋯   , α n \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_n α1,,αn线性相关的充要条件是行列式 ∣ α 1 , ⋯   , α n ∣ = 0 |\boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_n|=0 α1,,αn=0

    向量组部分线性相关则整体线性相关;向量组整体线性无关则部分线性相关。

    向量组 α 1 , ⋯   , α m \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_m α1,,αm线性相关的充要条件是存在一个向量可由其余 m − 1 m-1 m1个向量线性表示。

    若有 m m m n n n维向量 α 1 , ⋯   , α n \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_n α1,,αn m > n m>n m>n,则该向量组线性相关。

    若向量组 α 1 , ⋯   , α m \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_m α1,,αm线性无关,且添加 β \boldsymbol\beta β后线性相关,则 β \boldsymbol\beta β可由向量组 α 1 , ⋯   , α m \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_m α1,,αm线性表示,且表示法唯一。

  3. 等价向量组

    设有两个 n n n维向量组

    A : α 1 , ⋯   , α r B : β 1 ⋯   , β s A:\boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_r\quad B:\boldsymbol\beta_1\cdots,\boldsymbol\beta_s A:α1,,αrB:β1,βs

    如果 A A A中的每个向量组都能由向量组 B B B线性表示,则称向量组 A A A能由向量组 B B B线性表示。如果向量组 A , B A,B A,B能够相互线性表示,则称向量组 A A A B B B等价。

    大数定理:若 A A A可由 B B B线性表示,且向量组 A A A线性无关,则 r ≤ s r\le s rs

  4. 极大线性无关组

    若一个向量组 A A A中的部分组 α 1 , ⋯   , α r \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_r α1,,αr满足下列两个条件: α 1 , ⋯   , α r \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_r α1,,αr线性无关;向量组 A A A中的任一向量都可由 α 1 , ⋯   , α r \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_r α1,,αr线性表示,则称 α 1 , ⋯   , α r \boldsymbol\alpha_1,\cdots,\boldsymbol\alpha_r α1,,αr为向量组 A A A的一个极大线性无关组。

    向量组与它的任一极大线性无关组等价。

  5. 向量组的秩

    向量组 A A A的极大线性无关组所含向量的个数,称为该向量组的秩,记作 R ( A ) R(A) R(A)

    若向量组 A A A可由向量组 B B B线性表示,则 R ( A ) ≤ R ( B ) R(A)\le R(B) R(A)R(B),等价向量组有相同的秩。

    矩阵的秩可看作是矩阵各行组成行向量组的秩,也可以看作是矩阵各列组成列向量组的秩。

  6. 齐次线性方程组的基础解系

    设向量 ξ 1 , ⋯   , ξ t \boldsymbol\xi_1,\cdots,\boldsymbol\xi_t ξ1,,ξt是齐次线性方程组 A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的一组解,如果该向量组线性无关,且可以线性表示方程组的任意一个解,则称向量组 ξ 1 , ⋯   , ξ t \boldsymbol\xi_1,\cdots,\boldsymbol\xi_t ξ1,,ξt是齐次线性方程组 A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的一个基础解系。

    ξ 1 , ⋯   , ξ t \boldsymbol\xi_1,\cdots,\boldsymbol\xi_t ξ1,,ξt A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的解,则 k 1 ξ 1 + ⋯ + k t ξ t k_1\boldsymbol\xi_1+\cdots+k_t\boldsymbol\xi_t k1ξ1++ktξt也是 A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的解。

  7. 非齐次方程组的解

    ξ \boldsymbol\xi ξ A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的解, η \boldsymbol{\eta} η A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b的解,则 ξ + η \boldsymbol\xi+\boldsymbol{\eta} ξ+η A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b的解。

    η 1 , η 2 \boldsymbol{\eta}_1,\boldsymbol{\eta}_2 η1,η2 A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b的解,则 η 1 − η 2 \boldsymbol{\eta}_1-\boldsymbol{\eta}_2 η1η2 A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的解。

    η 1 , ⋯   , η t \boldsymbol{\eta}_1,\cdots,\boldsymbol{\eta}_t η1,,ηt A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b的解,则 1 t ( η 1 + ⋯ + η t ) \frac 1t(\boldsymbol{\eta}_1+\cdots+\boldsymbol{\eta}_t) t1(η1++ηt) A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b的解。

  8. 线性方程组相关定理

    线性方程组 A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b有解的充要条件是 R ( A ) = R ( A , b ) R(\boldsymbol{A})=R(\boldsymbol{A},\boldsymbol{b}) R(A)=R(A,b)

    R ( A , b ) = R ( A ) = r R(\boldsymbol{A},\boldsymbol{b})=R(\boldsymbol{A})=r R(A,b)=R(A)=r A \boldsymbol{A} A的列数为 n n n,则方程组 A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b r = n r=n r=n时有唯一解, r < n r<n r<n时有无穷多解。

    A m × n \boldsymbol{A}_{m\times n} Am×n秩为 r r r,若 r < n r<n r<n,则 A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0有基础解系,且基础解系所含向量个数为 n − r n-r nr

    ξ 1 , ⋯   , ξ n − r \boldsymbol\xi_1,\cdots,\boldsymbol\xi_{n-r} ξ1,,ξnr A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的一个基础解系,则 A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的通解为

    X = k 1 ξ 1 + ⋯ + k n − r ξ n − r \boldsymbol{X}=k_1\boldsymbol\xi_1+\cdots+k_{n-r}\boldsymbol\xi_{n-r} X=k1ξ1++knrξnr

    ξ 1 , ⋯   , ξ n − r \boldsymbol\xi_1,\cdots,\boldsymbol\xi_{n-r} ξ1,,ξnr A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的一个基础解系, η \boldsymbol{\eta} η A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b的一个特解,则 A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b的通解为

    X = η + k 1 ξ 1 + ⋯ + k n − r ξ n − r \boldsymbol{X}=\boldsymbol{\eta}+k_1\boldsymbol\xi_1+\cdots+k_{n-r}\boldsymbol\xi_{n-r} X=η+k1ξ1++knrξnr

    C r a m e r Cramer Cramer法则:若 ∣ A n × n ∣ ≠ 0 |\boldsymbol{A}_{n\times n}|\ne0 An×n=0,则方程组 A X = b \boldsymbol{A}\boldsymbol{X}=\boldsymbol{b} AX=b有唯一解 x j = ∣ A j ∣ ∣ A ∣ ( j = 1 , ⋯   , n ) x_j=\frac{|\boldsymbol{A}_j|}{|\boldsymbol{A}|}(j=1,\cdots,n) xj=AAj(j=1,,n)

    方程组 A m × n X = 0 \boldsymbol{A}_{m\times n}\boldsymbol{X}=\boldsymbol{0} Am×nX=0有非零解 ⇔ R ( A ) < n \Leftrightarrow R(\boldsymbol{A})<n R(A)<n

  9. 线性空间

    若对于非空集合 V V V和数域 F F F,对任意 a , b , c ∈ V , λ , μ ∈ F \boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\in V,\lambda,\mu\in F a,b,cV,λ,μF满足以下八条性质,则称 V V V是一个线性空间

    ( 1 ) a + 0 = a ( 2 ) a + ( − a ) = 0 ( 3 ) 1 ⋅ a = a ( 4 ) a + b = b + a ( 5 ) a + ( b + c ) = ( a + b ) + c ( 6 ) ( λ μ ) a = λ ( μ a ) ( 7 ) ( λ + μ ) a = λ a + μ a ( 8 ) λ ( a + b ) = λ a + λ b \begin{aligned} &(1)\boldsymbol{a}+\boldsymbol{0}=\boldsymbol{a}\\ &(2)\boldsymbol{a}+(-\boldsymbol{a})=\boldsymbol{0}\\ &(3)1\cdot\boldsymbol{a}=\boldsymbol{a}\\ &(4)\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}\\ &(5)\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})=(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}\\ &(6)(\lambda\mu)\boldsymbol{a}=\lambda(\mu\boldsymbol{a})\\ &(7)(\lambda+\mu)\boldsymbol{a}=\lambda\boldsymbol{a}+\mu\boldsymbol{a}\\ &(8)\lambda(\boldsymbol{a}+\boldsymbol{b})=\lambda\boldsymbol{a}+\lambda\boldsymbol{b} \end{aligned} (1)a+0=a(2)a+(a)=0(3)1a=a(4)a+b=b+a(5)a+(b+c)=(a+b)+c(6)(λμ)a=λ(μa)(7)(λ+μ)a=λa+μa(8)λ(a+b)=λa+λb

  10. 线性空间的基与坐标

    若向量组 ε 1 , ⋯   , ε n \boldsymbol\varepsilon_1,\cdots,\boldsymbol\varepsilon_n ε1,,εn线性无关,且能线性表示线性空间 V V V中的所有向量,则称为线性空间 V V V的一组基。

    V V V中的向量 α = a 1 ε 1 + ⋯ + a n ε n = [ ε 1 , ⋯   , ε n ] [ a 1 ⋮ a n ] \boldsymbol\alpha=a_1\boldsymbol\varepsilon_1+\cdots+a_n\boldsymbol\varepsilon_n=\begin{bmatrix}\boldsymbol\varepsilon_1,\cdots,\boldsymbol\varepsilon_n\end{bmatrix}\begin{bmatrix}a_1\\\vdots\\a_n\end{bmatrix} α=a1ε1++anεn=[ε1,,εn] a1an ,则称 [ a 1 ⋮ a n ] \begin{bmatrix}a_1\\\vdots\\a_n\end{bmatrix} a1an α \boldsymbol\alpha α在基 ε 1 , ⋯   , ε n \boldsymbol\varepsilon_1,\cdots,\boldsymbol\varepsilon_n ε1,,εn下的坐标。

  11. 过渡矩阵与坐标变换公式

    若两组基 S = [ ε 1 , ⋯   , ε n ] , T = [ η 1 , ⋯   , η n ] \boldsymbol{S}=\begin{bmatrix}\boldsymbol\varepsilon_1,\cdots,\boldsymbol\varepsilon_n\end{bmatrix},\boldsymbol{T}=\begin{bmatrix}\boldsymbol{\eta}_1,\cdots,\boldsymbol{\eta}_n\end{bmatrix} S=[ε1,,εn],T=[η1,,ηn]满足基变换公式 T = S P \boldsymbol{T}=\boldsymbol{S}\boldsymbol{P} T=SP,则称 P \boldsymbol{P} P是从 S \boldsymbol{S} S T \boldsymbol{T} T的过渡矩阵。

    设向量 α \boldsymbol\alpha α S , T \boldsymbol{S},\boldsymbol{T} S,T下的坐标分别为 X , Y \boldsymbol{X},\boldsymbol{Y} X,Y,则满足坐标变换公式 X = P Y \boldsymbol{X}=\boldsymbol{P}\boldsymbol{Y} X=PY

  12. 线性变换矩阵

    对于一组基 ξ 1 , ⋯   , ξ n \boldsymbol\xi_1,\cdots,\boldsymbol\xi_n ξ1,,ξn,若存在矩阵 A A A使得线性变换 σ \sigma σ满足 σ ( ξ 1 , ⋯   , ξ n ) = ( ξ 1 , ⋯   , ξ n ) A \sigma(\boldsymbol\xi_1,\cdots,\boldsymbol\xi_n)=(\boldsymbol\xi_1,\cdots,\boldsymbol\xi_n)\boldsymbol{A} σ(ξ1,,ξn)=(ξ1,,ξn)A,则称矩阵 A \boldsymbol{A} A为线性变换 σ \sigma σ在基 ξ 1 , ⋯   , ξ n \boldsymbol\xi_1,\cdots,\boldsymbol\xi_n ξ1,,ξn下所对应的矩阵。

    若线性空间 V V V的线性变换 σ \sigma σ在两组基 ξ 1 , ⋯   , ξ n \boldsymbol\xi_1,\cdots,\boldsymbol\xi_n ξ1,,ξn以及 η 1 , ⋯   , η n \boldsymbol{\eta}_1,\cdots,\boldsymbol{\eta}_n η1,,ηn下对应的矩阵分别为 A , B \boldsymbol{A},\boldsymbol{B} A,B ξ 1 , ⋯   , ξ n \boldsymbol\xi_1,\cdots,\boldsymbol\xi_n ξ1,,ξn η 1 , ⋯   , η n \boldsymbol{\eta}_1,\cdots,\boldsymbol{\eta}_n η1,,ηn的过渡矩阵为 P \boldsymbol{P} P,则有 B = P − 1 A P \boldsymbol{B}=\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} B=P1AP

  13. 解空间

    A X = 0 \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0} AX=0的解空间记为 V A V_A VA,其维数 dim ⁡ V A = n − R ( A ) \dim V_A=n-R(\boldsymbol{A}) dimVA=nR(A)

  14. 维数公式

    dim ⁡ ( W 1 + W 2 ) = dim ⁡ W 1 + dim ⁡ W 2 − dim ⁡ ( W 1 ∩ W 2 ) \dim(W_1+W_2)=\dim W_1+\dim W_2-\dim (W_1\cap W_2) dim(W1+W2)=dimW1+dimW2dim(W1W2)

    其中 W 1 + W 2 = { w 1 + w 2 : w 1 ∈ W 1 , w 2 ∈ W 2 } W_1+W_2=\{w_1+w_2:w_1\in W_1,w_2\in W_2\} W1+W2={w1+w2:w1W1,w2W2}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值