💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
摘要:为了促进微电网之间的能源互助,扩大能源交互类型,提高可再生能源利用率,本文提出了一种基于纳什博弈的面向多微电网(MMGs)的双层共享策略。首先,对微电网模型进行低碳转型,将源侧转化为综合灵活的碳捕获热电厂运行模式。然后,构建基于纳什博弈的多微电网主体电热双层共享模型,将其分解为收益最大化子问题和收益再分配子问题。在收益最大化子问题中,以碳配额的最低运营成本和分阶段碳交易为目标,采用交替方向乘子法进行分布式解决。在收益再分配子问题中,通过构建不同时期和能源类型的非对称能源映射贡献函数,实现合理的收益再分配。最后,仿真结果验证了所提出方法的有效性。结果表明,本文的策略可以实现多微电网(MMG)联盟的经济目标优化,并具有合理的收益再分配、促进风能和太阳能消费、减少碳排放的优势。
关键词:纳什博弈;多微电网;电热双层共享;气电厂低碳转型;交替方向乘子法;CHP
《中国至2060年碳中和研究报告》指出:“低碳零碳技术是实现碳中和目标的关键,特别是在这些方面,如捕集、利用和储存(CCUS),负排放和碳汇”。促进可再生能源的有效利实现电力系统的低碳、清洁能源供应,这些将是一举两得今后的重点研究方向。微电网是整合生产者和销售者的重要途径。在内部,包含各种分布式电源和多种类型的负载,可以促进能源的自我生产和自我消耗。同时,对外也可以与电网互动,实现供销一体化。点对点(P2P)微电网间的能源交易可以有效降低微电网的用电成本;提高新能源利用率,减少碳排放。
详细文章讲解见第4部分。
📚2 运行结果
部分代码:
%微网2(MG2)的分布式优化迭代模型
%调节Soc_C就可以实现,加不加CO2溶液存储器
function [ P_e_21 , Obj_MG_21 ] = Copy_of_Fun_MG_21( P_e_12 ,P_e_23 ,P_e_32 ,lambda_e_12,lambda_e_23 )
%% 决策变量初始化
L_e=sdpvar(1,24); %微网经过需求响应后实际的电负荷
L_h=sdpvar(1,24); %微网经过需求响应后实际的热负荷
P_e_cut=sdpvar(1,24); %微网的可削减电负荷
P_e_tran=sdpvar(1,24); %微网的可转移电负荷
P_h_DR=sdpvar(1,24); %微网的可削减热负荷
E_bat=sdpvar(1,24); %微网中的储电设备的储电余量
P_batc=sdpvar(1,24); %储电设备的充电功率
P_batd=sdpvar(1,24); %储电设备的放电功率
U_abs=binvar(1,24); %储电设备的放电状态位,取1时为放电,0为未放电
U_relea=binvar(1,24); %储电设备的充电状态位,取1时为充电,0为未充电
P_e_wd=sdpvar(1,24); %风力的实际出力值
P_e_GT=sdpvar(1,24); %燃气轮机的发电功率
P_h_GT=sdpvar(1,24); %燃气轮机的产热功率
P_h_GB=sdpvar(1,24); %余热锅炉的产热功率
P_buy=sdpvar(1,24); %微网向外电网的购买的电功率
P_sell=sdpvar(1,24); %微网向外电网的售出的电功率
Gas_GT=sdpvar(1,24); %GT的耗气量
Gas_GB=sdpvar(1,24); %GB的耗气量
Gas=sdpvar(1,24); %系统的总耗气量
%P2G+CCS
P_e1=sdpvar(1,24); %CHP的供电功率
P_e3=sdpvar(1,24); %CHP的供给P2G的功率
P_e2=sdpvar(1,24); %CHP的供给CCS的功率
P_h=sdpvar(1,24); %CHP的输出热功率
P_gs=sdpvar(1,24); %P2G的产气功率
C_ccs=sdpvar(1,24); %CCS的碳捕集二氧化碳量
C_p2g=sdpvar(1,24); %P2G所用的二氧化碳量
Soc_C = sdpvar(1,24); %CCS的碳捕集量/P2G所用的二氧化碳量
P_e_21 = sdpvar(1,24); %微网2给微网1的电量
%% 导入电/热负荷和电网购电电价
Predict_wd = [3716,3646,3617,3469,3401,3373,3168,2865,2712,2528,2572,2645,2681,2588,2594,2701,2638,2593,2674,2745,2851,2949,3529,3704 ];
L_e0 = [7764,6828,6116,6290,6377,6224,6420,7655,8761,11253,12184,13009,13809,13940,14005,13763,13671,14117,13216,11604,11197,9682,8960,8496] ;
L_h0 = [7783,7740,7842,7449,7772,7876,7639,7567,7246,7071,6940,6691,6486,6516,6486,6558,6556,6761,6763,6921,7109,7348,7755,7842]*0.4 ;
Predict_wd = floor(Predict_wd );
pri_e=[0.40*ones(1,7),0.75*ones(1,4),1.20*ones(1,3),0.75*ones(1,4),1.20*ones(1,4),0.40*ones(1,2)];
grid_sw= 0.2*ones(1,24);
%% 约束条件
C=[];
%微网的电/热负荷需求响应部分
for t=1:24
C=[C,
L_e(t)==L_e0(t)-P_e_cut(t)-P_e_tran(t), %微网的电负荷功率平衡约束
L_h(t)==L_h0(t)-P_h_DR(t), %微网的热负荷功率平衡约束
0 <=P_e_cut(t)<= 0.05*L_e0(t), %微网的可削减电功率上下限约束
-0.1*L_e0(t)<=P_e_tran(t) <= 0.1*L_e0(t), %微网的可转移电功率上下限约束
-0.1*L_h0(t)<=P_h_DR(t)<=0.1*L_h0(t), %微网的可削减热功率上下限约束
];
end
C=[C,sum(P_e_tran)==0,]; %转移的电负荷总量为0约束
C=[C,sum(P_h_DR )==0,]; %转移的热负荷总量为0约束
%微网的储电设备约束部分
%储能电站荷电状态连续性约束
C=[C,E_bat(1)== 1000+0.95*P_batc(1)-P_batd(1)/0.96,]; %1时段约束
for t=2:24
C=[C,E_bat(t)==E_bat(t-1)+0.95*P_batc(t)-P_batd(t)/0.96,]; %储电设备容量变化约束
end
%储能容量大小约束
for t=1:24
C=[C,500<=E_bat(t)<=2500,]; %储电量上下限约束
end
%始末状态守恒
C=[C,E_bat(24)==1000,];
%储能电站的充放电功率约束,Big-M法进行线性化处理
M=1000; %这里的M是个很大的数
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。