👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
给定质量、阻尼和刚度值的弹簧-质量-阻尼器系统行为分析。
弹簧-质量-阻尼器系统是一种常见的物理系统,用于描述弹簧和质量之间的相互作用。该系统的行为可以通过考虑弹簧的弹性力、质量的惯性和阻尼器的阻尼力来分析。
在没有外力作用下,弹簧-质量-阻尼器系统可以简化为一个二阶线性微分方程,即:
m * x'' + c * x' + k * x = 0
其中,m是质量,x是质量的位移,c是阻尼系数,k是弹簧的弹性系数,x'和x''分别表示位移的一阶和二阶导数。
根据上述方程,可以得到该系统的几种行为:
1. 无阻尼振动:当阻尼系数c为0时,系统变为一个简谐振动系统。此时,系统将以固有频率ω0 = sqrt(k/m)振动,振幅不断保持不变。
2. 欠阻尼振动:当阻尼系数c小于临界阻尼系数时,系统将进行欠阻尼振动。在此情况下,系统将以固有频率ω0振动,振幅逐渐减小。
3. 临界阻尼:当阻尼系数c等于临界阻尼系数时,系统将进行临界阻尼。此时,系统将以最快的速度回到平衡位置,但不会超过平衡位置。
4. 过阻尼振动:当阻尼系数c大于临界阻尼系数时,系统将进行过阻尼振动。在此情况下,系统将以较慢的速度回到平衡位置,振幅逐渐减小。
5. 阻尼振荡:当阻尼系数c大于0时,系统将发生阻尼振荡。在此情况下,振动的频率将略小于固有频率ω0。
弹簧-质量-阻尼器系统的行为取决于弹簧的弹性系数、质量的惯性和阻尼器的阻尼系数。通过调节这些参数,可以控制系统的振动特性和稳定性。
📚2 运行结果
部分代码:
figure;
plot(t,u(:,1),'r*--', t, u(:,2), 'bd:', 'MarkerSize', 2, 'LineWidth', 0.5 );
title(['Spring-Mass-Damper System of 2nd order ODE: ', ' M = ' num2str(Mass),...
'[kg]' '; D = ' num2str(Damping), '[Nsec^2/m^2]', '; S = ' num2str(Stiffness), '[N/m]']);
xlabel('time t');
ylabel('Displacement & Velocity'); grid on;
axis tight;
% axis([tspan(1) tspan(end) -1.5 1.5]); % Axis limits can be set
hold on;
Acceleration=-(Damping/Mass)*u(:,2)-(Stiffness/Mass)*u(:,1);
plot(t,Acceleration,'mo--', 'MarkerSize', 2, 'LineWidth', 0.5 );
legend('Displacement', 'Velocity', 'Acceleration');
hold off;
% -----------------------------------------------------------------------
% Nested functions: Mass, Damping and Stiffness are provided by the outer function.
%------------------------------------------------------------------------
function dudt = f(t,u)
% Derivative function. Mass, Damping and Stiffness are provided by the
% outer function or taken default (example values)
dudt = [ u(2); -(Damping/Mass)*u(2)-(Stiffness/Mass)*u(1) ];
end %
% -----------------------------------------------------------------------
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]周瑜,李敬豪.基于自适应弹簧阻尼器的变频凝泵低频共振治理方法研究[J].科技风,2023(07):58-61.DOI:10.19392/j.cnki.1671-7341.202307019.